INSTRUCTIONS

MODEL AV-1015-B

±50 VOLT

GENERAL PURPOSE LAB PULSE GENERATOR

AND LASER DIODE DRIVER

WITH IEEE 488.2 AND RS-232 CONTROL

SERIAL NUMBER: 14377
WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been disassembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 888-670-8729 (USA & Canada)
or +1-613-686-6675 (Worldwide)

E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARRANTY</td>
<td>2</td>
</tr>
<tr>
<td>TECHNICAL SUPPORT</td>
<td>2</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>REGULATORY NOTES</td>
<td>8</td>
</tr>
<tr>
<td>FCC PART 18</td>
<td>8</td>
</tr>
<tr>
<td>EC DECLARATION OF CONFORMITY</td>
<td>8</td>
</tr>
<tr>
<td>DIRECTIVE 2011/65/EU (RoHS)</td>
<td>9</td>
</tr>
<tr>
<td>DIRECTIVE 2002/96/EC (WEEE)</td>
<td>9</td>
</tr>
<tr>
<td>SOFTWARE LICENSING</td>
<td>10</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>11</td>
</tr>
<tr>
<td>VISUAL CHECK</td>
<td>11</td>
</tr>
<tr>
<td>POWER RATINGS</td>
<td>11</td>
</tr>
<tr>
<td>CONNECTION TO THE POWER SUPPLY</td>
<td>11</td>
</tr>
<tr>
<td>PROTECTION FROM ELECTRIC SHOCK</td>
<td>12</td>
</tr>
<tr>
<td>ENVIRONMENTAL CONDITIONS</td>
<td>13</td>
</tr>
<tr>
<td>LABVIEW DRIVERS</td>
<td>13</td>
</tr>
<tr>
<td>FUSES</td>
<td>14</td>
</tr>
<tr>
<td>AC FUSE REPLACEMENT</td>
<td>14</td>
</tr>
<tr>
<td>DC FUSE REPLACEMENT</td>
<td>15</td>
</tr>
<tr>
<td>FUSE RATINGS</td>
<td>15</td>
</tr>
<tr>
<td>FRONT PANEL CONTROLS</td>
<td>16</td>
</tr>
<tr>
<td>REAR PANEL CONTROLS</td>
<td>18</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>20</td>
</tr>
<tr>
<td>BASIC PULSE CONTROL</td>
<td>20</td>
</tr>
<tr>
<td>TRIGGER MODES</td>
<td>22</td>
</tr>
<tr>
<td>PULSE WIDTH MODES</td>
<td>22</td>
</tr>
<tr>
<td>GATING MODES</td>
<td>22</td>
</tr>
<tr>
<td>MINIMIZING WAVEFORM DISTORTIONS</td>
<td>23</td>
</tr>
<tr>
<td>OUTPUT IMPEDANCE</td>
<td>23</td>
</tr>
<tr>
<td>GENERATING LOW-VOLTAGE WAVEFORMS</td>
<td>23</td>
</tr>
<tr>
<td>USE 50Ω TRANSMISSION LINES</td>
<td>23</td>
</tr>
</tbody>
</table>
USE LOW-INDUCTANCE LOADS ... 23
NEVER APPLY AN EXTERNAL VOLTAGE TO THE OUTPUT 24
TYPICAL WAVEFORMS .. 25
OPERATIONAL CHECK ... 27
PROGRAMMING YOUR PULSE GENERATOR .. 30
 KEY PROGRAMMING COMMANDS .. 30
 ALL PROGRAMMING COMMANDS .. 31
OTHER INFORMATION ... 33
 APPLICATION NOTES ... 33
 MANUAL FEEDBACK .. 33
MECHANICAL INFORMATION .. 34
 TOP COVER REMOVAL ... 34
 RACK MOUNTING ... 34
 ELECTROMAGNETIC INTERFERENCE ... 34
MAINTENANCE .. 35
 REGULAR MAINTENANCE .. 35
 CLEANING .. 35
 TRIGGER DAMAGE ... 35
WIRING DIAGRAMS ... 36
 WIRING OF AC POWER .. 36
 WIRING OF FLOATING DC POWER ... 37
 PCB 158R7 - LOW VOLTAGE POWER SUPPLY 38
 PCB 278A - CAPACITOR BANKS ... 39
 PCB 96H - HIGH VOLTAGE DC POWER SUPPLY 40
 PCB 104H - KEYPAD / DISPLAY BOARD 41
 PCB 112C - AMPLITUDE RANGE CONTROL 42
 MAIN WIRING .. 43
PERFORMANCE CHECK SHEET .. 44

Last modified August 11, 2023.
Copyright © 2023 Avtech Electrosystems Ltd, All Rights Reserved.
INTRODUCTION

The AV-1015-B is a general-purpose ±50V pulser, offering 10 MHz operation, 10 ns rise and fall times, pulse widths from 20 ns to 10 ms, and a variable delay of up to 1 second. When driving a 50 Ohm load, it can provide up to 1 Amp of current. This model is ideal for both general lab pulse/delay generator applications, as well as high-current laser diode pulsing applications.

The AV-1015-B provides single or double pulse output and can be triggered or gated by an external source. A front-panel pushbutton can also be used to trigger the instrument. The output pulse width can be set to follow an input trigger pulse width and the output amplitude can be controlled by an externally applied 0 to +10 Volts DC control voltage.

The AV-1015-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40 character back-lit LCD display of the output amplitude, polarity, pulse width, pulse repetition frequency, source resistance and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete “snapshot” of all key instrument settings, and recall this setup at a later time.

The source resistance can be set at either 2 or 50Ω. In the 2Ω setting, the output amplitude is variable from <5 to 50V. In the 50Ω setting the amplitude is variable from <1 to 25V to 50Ω, or to 50 Volts to a high impedance. The output amplitude can also be controlled externally by applying a 0 to +10V DC control voltage to a rear panel BNC connector.

The MOSFET output stages will safely withstand any combination of front panel control settings, output open or short circuits, and high duty cycles. An internal power supply monitor removes the power to the output stage for five seconds if an average power overload exists. After that time, the unit operates normally for one second, and if the overload condition persists, the power is cut again. This cycle repeats until the overload is removed. With a 50Ω load the unit will withstand duty cycles as high as 25% but with high impedance loads the duty cycle may be as high as 80%. The output stage will source up to 1 Amp (and will automatically shut down if the load current exceeds this significantly).

This instrument is intended for use in research and development laboratories.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>AV-1015-B</td>
</tr>
<tr>
<td>Amplitude</td>
<td>with $Z_{\text{out}} = 2\Omega$: ≤ 5 to 50 V with $Z_{\text{out}} = 50\Omega$: ≤ 1 to 25 V</td>
</tr>
<tr>
<td>Pulse width, PW (FWHM)</td>
<td>20 ns to 10 ms</td>
</tr>
<tr>
<td>Rise time (20%-80%)</td>
<td>≤ 10 ns</td>
</tr>
<tr>
<td>Fall time (80%-20%)</td>
<td>≤ 10 ns</td>
</tr>
<tr>
<td>Pulse repetition frequency, PRF</td>
<td>1 Hz to 10 MHz</td>
</tr>
<tr>
<td>Maximum duty cycle</td>
<td>25% into 50Ω loads 50% into $>2000\Omega$</td>
</tr>
<tr>
<td>Output impedance (Z_{out})</td>
<td>$\approx 2\Omega$ or 50 Ω, switchable</td>
</tr>
<tr>
<td>Required load impedance</td>
<td>$\geq 50\Omega$</td>
</tr>
<tr>
<td>Output polarity</td>
<td>Positive or negative, switchable</td>
</tr>
<tr>
<td>Leading edge overshoot (into a non-inductive 50 Ω load)</td>
<td>$\leq 8%$ of maximum rated amplitude for all amplitudes. Typically $< 3%$ at maximum amplitude. Settles to $\pm 3%$ of stable amplitude within 60 ns.</td>
</tr>
<tr>
<td>Typical pulse-top droop</td>
<td>$dV/dt \approx I_{\text{OUT}}/4000\mu\text{F}$</td>
</tr>
<tr>
<td>Double pulse mode spacing</td>
<td>1 us to 1 second (measured between the two leading edges of the pulse doublet). Must not exceed one-half of the period. There must be at least (PW + 100 ns) of “dead time” (no pulsing) between the trailing edge of the first pulse and the leading edge of the second pulse. For instance, if the pulse width is 1 us, the programmed delay between leading edges must be greater than 1 us (the pulse width) + 1.1 us (the minimum dead time) = 2.1 us, and the period must be greater than 4.2 us.</td>
</tr>
<tr>
<td>Sync output</td>
<td>+3V, $>30\text{ns}$, to $\geq 50\Omega$</td>
</tr>
<tr>
<td>Gated operation</td>
<td>TTL, synchronous or asynchronous, active high or low, switchable.</td>
</tr>
<tr>
<td>Trigger modes</td>
<td>Internal trigger, external trigger (TTL-level pulse, > 10 ns, 1 kΩ input impedance), front-panel “Single Pulse” pushbutton, or single pulse trigger via computer command. In the external trigger mode, the pulse width may be set by the instrument, or it may be set to track the input pulse width.</td>
</tr>
<tr>
<td>Variable delay</td>
<td>Sync to main output: 0 to ± 1.0 seconds, for all trigger modes (including external trigger).</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>≤ 150 ns (Ext trig in to pulse out)</td>
</tr>
<tr>
<td>Jitter</td>
<td>$\leq 35\text{ps} \pm 0.015%$ of sync delay (sync out to pulse out)</td>
</tr>
<tr>
<td>Ethernet port, for remote control using VXI-11.3, ssh, telnet, & web</td>
<td>Included. Recommended as a modern alternative to GPIB / RS-232. See http://www.avtechpulse.com/options/vxi for details.</td>
</tr>
<tr>
<td>Settings resolution</td>
<td>The resolution of the timing parameters (pulse width, delay, period) varies, but is always better than 0.15% of ([set value] + 20 ns). The amplitude resolution is $< 0.1%$ of the maximum amplitude.</td>
</tr>
<tr>
<td>Settings accuracy</td>
<td>Typically $\pm 3%$ (plus $\pm 1\text{V}$ or ± 2 ns) after 10 minute warmup, at low duty cycles. For high-accuracy applications requiring traceable calibration, verify the output parameters with a calibrated oscilloscope.</td>
</tr>
<tr>
<td>Output protection</td>
<td>The output is protected against short circuits, open circuits, and high duty cycle.</td>
</tr>
<tr>
<td>Connectors</td>
<td>BNC female</td>
</tr>
<tr>
<td>Power requirements</td>
<td>100 - 240 Volts, 50 - 60 Hz</td>
</tr>
<tr>
<td>Dimensions</td>
<td>100 mm x 430 mm x 375 mm (3.9” x 17” x 14.8”)</td>
</tr>
<tr>
<td>Chassis material, weight</td>
<td>Anodized aluminum with blue-gray plastic trim. ≤ 10 kg / 22 lbs. Designed & assembled in North America.</td>
</tr>
<tr>
<td>Temperature range</td>
<td>$+5°C$ to $+40°C$</td>
</tr>
<tr>
<td>Optional rack mount kit</td>
<td>Add the suffix “-R5” to the model number to include 19” rack mount kit</td>
</tr>
</tbody>
</table>

2) The output amplitude may also be controlled by applying 0 to +10 V DC to a rear-panel BNC connector.
3) The output pulse width may also be controlled externally by applying a TTL-level trigger of the desired width to a rear-panel BNC connector (PWIN = PWOUT mode).
4) Valid into a 50 Ohm load.
5) This is the internal resistance in series with the output. It is not the load resistance.
6) The output can be set at lower values, but the overshoot may become significant relative to the pulse amplitude at low amplitudes.
7) The amplitude may decrease ~10% relative to the programmed setting if the instrument is operating at or near the maximum specified duty cycle.
8) Subject to the additional limitation that there must be at least 75 ns of “dead time” (no pulsing) between the trailing edge of one pulse and the leading edge of the next pulse.
9) These instruments are provided with a basic calibration checksheet, showing a selection of measured output parameters. These measurements are performed with equipment that is calibrated on a regular basis by a third-party ISO/IEC 17025:2005 accredited calibration laboratory. However, Avtech itself does not claim any accreditation. For applications requiring traceable performance, use a calibrated measurement system rather than relying on the accuracy of the pulse generator settings.
REGULATORY NOTES

FCC PART 18

This device complies with part 18 of the FCC rules for non-consumer industrial, scientific and medical (ISM) equipment.

This instrument is enclosed in a rugged metal chassis and uses a filtered power entry module (where applicable). The main output signal is provided on a shielded connector that is intended to be used with shielded coaxial cabling and a shielded load. Under these conditions, the interference potential of this instrument is low.

If interference is observed, check that appropriate well-shielded cabling is used on the output connectors. Contact Avtech (info@avtechpulse.com) for advice if you are unsure of the most appropriate cabling. Also, check that your load is adequately shielded. It may be necessary to enclose the load in a metal enclosure.

If any of the connectors on the instrument are unused, they should be covered with shielded metal “dust caps” to reduce the interference potential.

This instrument does not normally require regular maintenance to minimize interference potential. However, if loose hardware or connectors are noted, they should be tightened. Contact Avtech (info@avtechpulse.com) if you require assistance.

EC DECLARATION OF CONFORMITY

We, Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale
Ottawa, Ontario
Canada K2C 3H5

declare that this pulse generator meets the intent of Directive 2004/108/EG for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission

EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 2006/95/EC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

DIRECTIVE 2011/65/EU (RoHS)

We, Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale
Ottawa, Ontario
Canada K2C 3H5

declare that, to the best of our knowledge, all electrical and electronic equipment (EEE) sold by the company are in compliance with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (also known as “RoHS Recast”). In addition, this declaration of conformity is issued under the sole responsibility of Avtech Electrosystems Ltd. Specifically, products manufactured do not contain the substances listed in the table below in concentrations greater than the listed maximum value.

<table>
<thead>
<tr>
<th>Material/Substance</th>
<th>Threshold level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Pb)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Hexavalent Chromium (Cr6+)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Polybrominated Biphenyls (PBB)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Polybrominated Diphenyl ethers (PBDE)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>< 100 ppm (0.01% by mass)</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate (DEHP)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Butyl benzyl phthalate (BBP)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>DIBUTYL PHTHALATE (DBP)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
<tr>
<td>Diisobutyl phthalate (DIBP)</td>
<td>< 1000 ppm (0.1% by mass)</td>
</tr>
</tbody>
</table>

DIRECTIVE 2002/96/EC (WEEE)

European customers who have purchased this equipment directly from Avtech will have completed a “WEEE Responsibility Agreement” form, accepting responsibility for WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local
laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC.

Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities will lie with the representative, unless other arrangements (under Article 9) have been made.

Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.

FIRMWARE LICENSING

Instruments with firmware versions 5.00 or higher use open-source software internally. Some of this software requires that the source code be made available to the user as a condition of its licensing. This source code is available upon request (contact info@avtechpulse.com).

Earlier firmware versions do not contain any open source software.
INSTALLATION

VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the “Programming Manual for -B Instruments”) are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz.

The maximum power consumption is 90 Watts. Please see the “FUSES” section for information about the appropriate AC and DC fuses.

This instrument is an “Installation Category II” instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.)

⚠️ Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord.

The table below describes the power cord that is normally supplied with this instrument, depending on the destination region:
<table>
<thead>
<tr>
<th>Destination Region</th>
<th>Description</th>
<th>Option</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom, Hong Kong, Singapore, Malaysia</td>
<td>BS 1363, 230V, 50 Hz</td>
<td>-AC00</td>
<td>Qualtek</td>
<td>370001-E01</td>
</tr>
<tr>
<td>Australia, New Zealand</td>
<td>AS 3112:2000, 230-240V, 50 Hz</td>
<td>-AC01</td>
<td>Qualtek</td>
<td>374003-A01</td>
</tr>
<tr>
<td>Continental Europe, Korea, Indonesia, Russia</td>
<td>European CEE 7/7 “Schuko” 230V, 50 Hz</td>
<td>-AC02</td>
<td>Qualtek</td>
<td>364002-D01</td>
</tr>
<tr>
<td>North America, Taiwan</td>
<td>NEMA 5-15, 120V, 60 Hz</td>
<td>-AC03</td>
<td>Qualtek</td>
<td>312007-01</td>
</tr>
<tr>
<td>Switzerland</td>
<td>SEV 1011, 230V, 50 Hz</td>
<td>-AC06</td>
<td>Qualtek</td>
<td>378001-E01</td>
</tr>
<tr>
<td>South Africa, India</td>
<td>SABS 164-1, 220-250V, 50 Hz</td>
<td>-AC17</td>
<td>Volex</td>
<td>2131H 10 C3</td>
</tr>
<tr>
<td>Japan</td>
<td>JIS 8303, 100V, 50-60 Hz</td>
<td>-AC18</td>
<td>Qualtek</td>
<td>397002-01</td>
</tr>
<tr>
<td>Israel</td>
<td>SI 32, 220V, 50 Hz</td>
<td>-AC19</td>
<td>Qualtek</td>
<td>398001-01</td>
</tr>
<tr>
<td>China</td>
<td>GB 1002-1 / 2099-1, 220V, 50 Hz</td>
<td>-AC22</td>
<td>Qualtek</td>
<td>399012-01</td>
</tr>
</tbody>
</table>

PROTECTION FROM ELECTRIC SHOCK

⚠️ Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should:

1. Keep exposed high-voltage wiring to an absolute minimum.
2. Wherever possible, use shielded connectors and cabling.
3. Connect and disconnect loads and cables only when the instrument is turned off.
4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel.
ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2,000 m;
3. temperature 5 °C to 40 °C;
4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C;
5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

LABVIEW DRIVERS

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:

Pry out the fuse drawer using a screwdriver.
DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

<table>
<thead>
<tr>
<th>Fuses</th>
<th>Nominal Mains Voltage</th>
<th>Rating</th>
<th>Case Size</th>
<th>Littelfuse Part Number</th>
<th>Digi-Key Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1, #2 (AC)</td>
<td>115 V</td>
<td>0.8A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>0218.800HXP</td>
<td>F2418-ND</td>
</tr>
<tr>
<td></td>
<td>230 V</td>
<td>0.5A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>0218.500HXP</td>
<td>F2416-ND</td>
</tr>
<tr>
<td>#3 (DC)</td>
<td>N/A</td>
<td>1.6A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>021801.6HXP</td>
<td>F2424-ND</td>
</tr>
<tr>
<td>#4 (DC)</td>
<td>N/A</td>
<td>1.6A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>021801.6HXP</td>
<td>F2424-ND</td>
</tr>
</tbody>
</table>

The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com).

Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.
1. **POWER Switch.** This is the main power switch. When turning the instrument on, there is normally a delay of 10 seconds before anything is shown on the main display, as the internal operating system boots up.

2. **OVERLOAD Indicator.** When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

 This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.

 Note that the output stage will safely withstand a short-circuited load condition.

3. **OUT CONNECTOR.** This BNC connector provides the main output signal, into load impedances of 50Ω or higher.

 Caution: Voltages as high as ±50V may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed.

4. **SYNC OUT.** This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the “DELAY” controls and has an approximate amplitude of +3 Volts to $R_L > 50\Omega$ with a pulse width of approximately 50 ns.
5. **LIQUID CRYSTAL DISPLAY (LCD)**. This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The “Programming Manual for -B Instruments” describes the menus and submenus in detail.

6. **KEYPAD**.

<table>
<thead>
<tr>
<th>Control Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVE</td>
<td>This moves the arrow pointer on the display.</td>
</tr>
<tr>
<td>CHANGE</td>
<td>This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer.</td>
</tr>
<tr>
<td>×10</td>
<td>If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten.</td>
</tr>
<tr>
<td>÷10</td>
<td>If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten.</td>
</tr>
<tr>
<td>+/-</td>
<td>If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter.</td>
</tr>
<tr>
<td>EXTRA FINE</td>
<td>This changes the step size of the ADJUST knob. In the extra-fine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes.</td>
</tr>
<tr>
<td>ADJUST</td>
<td>This large knob adjusts the value of any displayed numeric adjustable values, such as frequency, pulse width, etc. The adjust step size is set by the "EXTRA FINE" button. When the main menu is displayed, this knob can be used to move the arrow pointer.</td>
</tr>
</tbody>
</table>
Note: some connectors may be in different positions than shown above, depending on the exact combination of options ordered.

1. **AC POWER INPUT.** An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.

2. **AC FUSE DRAWER.** The two fuses that protect the AC input are located in this drawer. Please see the “FUSES” section of this manual for more information.

3. **DC FUSES.** These two fuses protect the internal DC power supplies. Please see the “FUSES” sections of this manual for more information.

4. **GATE.** This TTL-level (0 and +5V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulled-down to ground by a 1 kΩ resistor. When set to active low mode, this input is pulled-up to +5V by a 1 kΩ resistor.

5. **TRIG.** This TTL-level (0 and +5V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is 1 kΩ. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.)
When triggering externally, the instrument can be set such that the output pulse width tracks the pulse width on this input, or the output pulse width can be set independently.

6. **GPIB Connector.** A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the “Programming Manual for -B Instruments” for more details on GPIB control.

7. **RS-232 Connector.** A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. A user name (“admin”) and a password (“default”, as shipped from the factory) are required when logging into a serial terminal session. The internal controller attempts to auto-sense the parity setting. It may be necessary to send a few return characters before attempting a login in order to provide enough data to allow this auto-sensing to work. (A standard Linux “agetty” process is used to implement serial control internally.) See the “Programming Manual for -B Instruments” for more details on RS-232 control.

8. **Network Connector.** This Ethernet connector allows the instrument to be remotely controlled using the VXI-11.3, ssh (secure shell), telnet, and http (web) protocols. See the “Programming Manual for -B Instruments” for more details.

9. **AMP Connector.** The output amplitude can be set to track the voltage on this input. Zero Volts in corresponds to zero amplitude output, and +10V in corresponds to maximum amplitude out. This mode is activated by selecting "Ext Control" on the front-panel amplitude menu, or with the "source:voltage external" command.
GENERAL INFORMATION

BASIC PULSE CONTROL

This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC. The OUT channel is the signal that is applied to the load. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse.

These pulses are illustrated below, assuming internal triggering and a positive delay:

![Figure A](image1)

If the delay is negative, the order of the SYNC and OUT pulses is reversed:

![Figure B](image2)

The next figure illustrates the relationship between the signal when an external TTL-level trigger is used:
As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed.

The last figure illustrates the relationship between the signal when an external TTL-level trigger is used in the $PW_{IN} = PW_{OUT}$ mode. In this case, the output pulse width equals the external trigger’s pulse width (approximately), and the delay circuit is bypassed:

The delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces.
TRIGGER MODES

This instrument has four trigger modes:

- Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally.

- External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.

- Manual Trigger: the instrument is triggered by the front-panel “SINGLE PULSE” pushbutton.

- Hold Trigger: the instrument is set to not trigger at all.

These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the “Programming Manual for -B Instruments” for more details.)

PULSE WIDTH MODES

This instrument has two pulse width modes:

- Normal: the instrument controls the output pulse width.

- \(PW_{IN}=PW_{OUT} \): the output pulse width equals the pulse width of the trigger signal on the “TRIG” connector. The instrument must be in the external trigger mode.

These modes can be selected using the front panel pulse width menu, or by using the appropriate programming commands. (See the “Programming Manual for -B Instruments” for more details.)

GATING MODES

Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the front-panel gate menu or the appropriate programming commands. This input can also be set to act synchronously or asynchronously. When set to asynchronous mode, the GATE will disable the output immediately. Output pulses may be truncated. When set to synchronous mode, the output will complete the full pulse width if the output is high, and then stop triggering. No pulses are truncated in this mode.
MINIMIZING WAVEFORM DISTORTIONS

OUTPUT IMPEDANCE

The output impedance of the AV-1015-B can be set at 2Ω or 50Ω using the front panel controls (or GPIB/RS-232 commands).

When driving a high impedance load (i.e., \(R_l \gg 50\Omega \)), the output impedance should always be set to 50Ω. This will minimize waveform ringing and transmission line reflections, without adversely affecting the pulse amplitude.

When driving a 50Ω load, it is also highly desirable to set the output impedance to 50Ω. However, the output impedance and the load resistance will cause a resistive voltage-divider effect, reducing the output amplitude at the load by a factor of two. Thus, the 50Ω output impedance can only be used to generate amplitudes of 0 to ±25V.

GENERATING LOW-VOLTAGE WAVEFORMS

When generating low-voltage waveforms, the output waveforms will have much less distortion (i.e. ringing) if the output impedance is set to 50Ω. As noted above, if the pulse generator is driving a 50Ω load, this will result in a resistive-divider effect – for instance, to obtain the best possible +5V waveform into a 50Ω load, set the pulse generator output impedance to 50Ω, and the amplitude to +10V.

USE 50Ω TRANSMISSION LINES

Connect the load to the pulse generator with 50Ω transmission lines (e.g. RG-58 or RG-174 cable). If possible, use a 50Ω load. If the actual device under test has a high impedance, consider adding a 50Ω termination in parallel with the load to properly terminate the transmission line.

Setting the pulse generator output impedance to 50Ω will “back-match” the transmission line, resulting in improved performance.

USE LOW-INDUCTANCE LOADS

Lenz’s Law predicts that for an inductive voltage spike will be generated when the current through an inductance changes. Specifically, \(V_{SPIKE} = L \times \frac{dI_{LOAD}}{dt} \), where \(L \) is the inductance, \(I_{LOAD} \) is the load current change, and \(t \) is time. For this reason, it is important to keep any parasitic in the load low. This means keeping wiring short, and using low inductance components. In particular, wire-wound resistors should be avoided.
NEVER APPLY AN EXTERNAL VOLTAGE TO THE OUTPUT

Externally generated potentials must never be applied to the output. It may damage the instrument. Failures resulting from this are not covered by the warranty.
TYPICAL WAVEFORMS

Figure 1 shows typical output waveforms with the pulse generator amplitude set at +50V, the pulse width at 500 ns, and the output impedance set to 2Ω. The pulse generator is connected to a 50Ω load through an 8” length of RG-174 cable.

![Figure 1 (10V/div, 100 ns/div)](image1)

Figure 2 shows the results with similar settings, except that the output impedance has been set to 50Ω. As a result, the amplitude at the load has fallen by a factor of two, and the waveform shows less distortion on the very fast falling edge.

![Figure 2 (10V/div, 100 ns/div)](image2)

Figures 3 and 4 show operation at low voltages. Figure 3 shows typical output waveforms with the pulse generator amplitude set at +5V, the pulse width at 500 ns, and the output impedance set to 2Ω. The pulse generator is again connected to a 50Ω load through an 8” length of RG-174 cable.

![Figure 3 (10V/div, 100 ns/div)](image3)

![Figure 4 (10V/div, 100 ns/div)](image4)
load through an 8” length of RG-174 cable. At this low amplitude, the waveform is dominated by undesirable ringing.

![Figure 3 (2V/div, 100 ns/div)](image)

This situation can be remedied by setting the output impedance to 50Ω, and doubling the set amplitude to +10V to compensate for the voltage-divider effect. Figure 4 shows the improved waveform that results.

![Figure 4 (2V/div, 100 ns/div)](image)
OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the “Local Control” section of the “OP1B Interface Programming Manual” thoroughly. The “Local Control” section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.

1. Connect a cable from the SYNC OUT connector to the TRIG input of an oscilloscope. Connect a 15W (or higher), low-inductance, 50Ω load to the OUT connector and place the scope probe across this load. Set the oscilloscope to trigger externally with the vertical setting at 5 Volts/div and the horizontal setting at 1 us/div.

2. Turn on the AV-1015-B. The main menu will appear on the LCD.

3. To set the AV-1015-B to trigger from the internal clock at a PRF of 10 kHz:
 a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is.
 b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 kHz.
 c) The arrow pointer should be pointing at the “Internal” choice. If it is not, press MOVE until it is.
 d) Press CHANGE to return to the main menu.

4. To set the delay to 1 us:
 a) Press the MOVE button until the arrow pointer is pointing at the delay menu item.
 b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 1 us.
 c) The arrow pointer should be pointing at the “Normal” choice. If it is not, press MOVE until it is.
 d) Press CHANGE to return to the main menu.

5. To set the pulse width to 1 us:
a) Press the MOVE button until the arrow pointer is pointing at the pulse width menu item.

b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 1 us.

c) The arrow pointer should be pointing at the “Normal” choice. If it is not, press MOVE until it is.

d) Press CHANGE to return to the main menu.

6. The main menu display should show that the output impedance (ZOUT) is set at 2Ω, and the load impedance (RL) is set at 50Ω. If they are different, change the settings.

7. At this point, nothing should appear on the oscilloscope.

8. To enable the output:

 a) Press the MOVE button until the arrow pointer is pointing at the output menu item.

 b) Press the CHANGE button. The output submenu will appear.

 c) Press MOVE until the arrow pointer is pointing at the “ON” choice.

 d) Press CHANGE to return to the main menu.

9. To change the output amplitude:

 a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item.

 b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at 10V.

 c) Observe the oscilloscope. You should see 1 us wide, 10V pulses.

 d) Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. Set it at 20V.

 e) Press CHANGE to return to the main menu.

10. Try varying the pulse width, by repeating step (5). As you rotate the ADJUST knob, the pulse width on the oscilloscope will change. It should agree with the displayed value. Stay below 25% duty cycle.
11. Go to the output impedance menu, and set the output impedance (ZOUT) to 50 Ω. Return to the main menu. If a 50 Ω load is attached to the output (see step 1) the amplitude should fall by a factor of 2, to 10V.

12. To change the output amplitude polarity:

 a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item.

 b) Press the CHANGE button. The amplitude submenu will appear.

 c) Press the “+/-” button. The amplitude as seen on the oscilloscope should become negative.

 d) Press CHANGE to return to the main menu.

This completes the operational check.
KEY PROGRAMMING COMMANDS

The “Programming Manual for -B Instruments” describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up, using the internal trigger source:

```
*rst                                (resets the instrument)
trigger:source internal            (selects internal triggering)
frequency 1000 Hz  (sets the frequency to 1000 Hz)
pulse:width 10 us  (sets the pulse width to 10 us)
pulse:delay 1 us  (sets the delay to 1 us)
output:load 50  (tells the instrument that you are using a 50Ω load. This affects the duty cycle limit.)
output:impedance 2  (sets the output impedance to 2Ω. The only other allowed setting is output:impedance 50.)
output on  (turns on the output)
volt 35  (sets the amplitude to 35 V)
```

For triggering a single event, this sequence would be more appropriate:

```
*rst                                (resets the instrument)
trigger:source hold                (turns off all triggering)
pulse:width 10 us  (sets the pulse width to 10 us)
pulse:delay 1 us  (sets the delay to 1 us)
output:load 50  (tells the instrument that you are using a 50Ω load. This affects the duty cycle limit.)
output:impedance 2  (sets the output impedance to 2Ω. The only other allowed setting is output:impedance 50.)
output on  (turns on the output)
volt 35  (sets the amplitude to 35 V)
trigger:source immediate  (generates a single non-repetitive trigger event)
trigger:source hold                (turns off all triggering)
output off                          (turns off both outputs)
```

To trigger from an external TTL pulse, use:

```
*rst                                (resets the instrument)
trigger:source external            (selects external triggering)
pulse:width 10 us  (sets the pulse width to 10 us)
pulse:delay 1 us  (sets the delay to 1 us)
output:load 50  (tells the instrument that you are using a 50Ω load.)
```
This affects the duty cycle limit.)

- **output:impedance 2** *(sets the output impedance to 2Ω. The only other allowed setting is output:impedance 50.)*
- **output on** *(turns on the output)*
- **volt 35** *(sets the amplitude to 35 V)*

To set the output pulse width to track the trigger pulse width in external mode, use:

- **<rst>** *(resets the instrument)*
- **trigger:source external** *(selects external triggering)*
- **pulse:width in** *(PW_{OUT} = PW_{IN})*
- **output:load 50** *(tells the instrument that you are using a 50Ω load. This affects the duty cycle limit.)*
- **output:impedance 2** *(sets the output impedance to 2Ω. The only other allowed setting is output:impedance 50.)*
- **output on** *(turns on the output)*
- **volt 35** *(sets the amplitude to 35 V)*

These commands will satisfy 90% of your programming needs.

ALL PROGRAMMING COMMANDS

For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the “Programming Manual for -B Instruments”. (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.)

Table: ALL PROGRAMMING COMMANDS

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPut:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:LOAD</td>
<td><numeric value></td>
<td></td>
</tr>
<tr>
<td>:[STATE]</td>
<td><boolean value></td>
<td></td>
</tr>
<tr>
<td>:IMPedance</td>
<td><numeric value></td>
<td></td>
</tr>
<tr>
<td>:PROTection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:TRIPped?</td>
<td></td>
<td>[query only]</td>
</tr>
<tr>
<td>[SOURce]:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FREQuency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:CW</td>
<td>FiXed]</td>
<td><numeric value></td>
</tr>
<tr>
<td>[SOURce]:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PERiod</td>
<td><numeric value></td>
<td></td>
</tr>
<tr>
<td>:WIOUTh</td>
<td><numeric value></td>
<td>IN</td>
</tr>
<tr>
<td>:DCYCle</td>
<td><numeric value></td>
<td></td>
</tr>
<tr>
<td>:HOLD</td>
<td>WIDTH</td>
<td>DCYCle</td>
</tr>
<tr>
<td>:DELay</td>
<td><numeric value></td>
<td></td>
</tr>
<tr>
<td>:DOUBle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATE]</td>
<td><boolean value></td>
<td></td>
</tr>
<tr>
<td>:DELay</td>
<td><numeric value></td>
<td></td>
</tr>
</tbody>
</table>
:GATE
 :TYPE ASYNC | SYNC
 :LEVEL HIgh | LOw

[SOURce]:
 :VOLTage
 [:LEVEL]
 [:IMMediate]
 [:AMPLitude] <numeric value> | EXTernal
 :PROTection
 :TRIPped? [query only]

STATUS:
 :OPERation
 [:EVENt]?
 :CONDition?
 :ENABle <numeric value> [implemented but not useful]
 :QUEStionable
 [:EVENt]?
 :CONDition?
 :ENABle <numeric value> [implemented but not useful]

SYSTem:
 :COMMunicate
 :GPIB
 :ADDRess <numeric value>
 :SERial
 :CONTrol
 :RTS ON | IBFull | RFR
 :REceive
 :ERRor
 [:NEXT]?
 :COUNT?
 :VERSion?
 [query only]

TRIGger:
 :SOURce
 INTernal | EXTernal | MANual | HOLD | IMMediate [no query form]
 *CLS
 *ESE
 *ESR?
 *IDN?
 *OPC
 *SAV 0 | 1 | 2 | 3 [no query form]
 *RCL
 *RST
 *SRE
 *STB? [query only]
 *TST? [query only]
 *WAI [no query form]
OTHER INFORMATION

APPLICATION NOTES

Application notes are available on the Avtech web site, at http://www.avtechpulse.com/appnote.

MANUAL FEEDBACK

Please report any errors or omissions in this manual, or suggestions for improvement, to info@avtechpulse.com. Thanks!
MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

⚠ Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge.

There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel.

⚠ Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length.
MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.

On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the “FUSES” section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the “TOP COVER REMOVAL” section for instructions on accessing the interior.) No other cleaning is recommended.

TRIGGER DAMAGE

The rear-panel TRIG input, used in the external trigger mode, is protected by a diode clamping circuit. However, the protection circuit is not foolproof, and it is possible for a grossly excessive signal to damage the trigger circuitry on the main timing control board (the 4×10 inch board on the right side of the instrument).

The IC that is most likely to fail under these conditions is installed in a socket. It is a standard TTL IC in a 16-pin plastic DIP package, model 74F151 or equivalent.

If you suspect that this IC has been damaged, turn off the power and replace this IC. It may be replaced by a 74F151, 74LS151, 74ALS151, or 74HCT151.
WIRING OF AC POWER

Do not attempt any repairs on this instrument without the recommendations and procedures described in the manual. Contact service if the instrument requires servicing. Service is to be performed only by qualified service personnel.

Center in air space. Use 1/4" metal standoff.

CAUTION: POWER SWITCH SV325-50 (CV Industries GPS-4022-0013)
Note: 19002-0009, 0.187" x 0.032"

Safely earth ground/ Primary earth ground/ Protective conductor terminal

Note: 19002-0001, 0.250" x 0.032"

Holes 19073-0035 ring terminal, #8. Install green/yellow wires at bottom of stack, closest to wall.

Chassis ground post. Secundary earth ground

Note: 19002-0001, 0.250" x 0.032"

Sheet:
File: v2.4iced.sch
Title: MAIN AC POWER, ECP180/EPL225/VMS-225C-24
Size: A4
Date: 2023-07-29
Rev: 2A
Rived E.B.A. reason: 7.08-1.69v9
PERFORMANCE CHECK SHEET