AVTECH ELECTROSYSTEMS LTD.
NANOSECOND WAVEFORM ELECTRONICS SINCE 1975
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270
FAX: (613) 226-2802

TEL: 1-800-265-6681
FAX: 1-800-561-1970
e-mail: info@avtechpulse.com
http://www.avtechpulse.com
$\square \quad$ P.O. BOX 5120 STN. F OTTAWA, ONTARIO CANADA K2C $3 \mathrm{H}_{4}$ TEL: (613) 226-5772
FAX: (613) 226-2802

INSTRUCTIONS

S.N.: 93í9

WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 613-226-5772 or 1-800-265-6681
Fax: 613-226-2802 or 1-800-561-1970
E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com

TABLE OF CONTENTS

WARRANTY 2
TABLE OF CONTENTS 3
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT 4
GENERAL OPERATING INSTRUCTIONS 5
FIG. 2: PULSE GENERATOR TEST ARRANGEMENT 7
CONNECTING AVO-9A-C TO AVX-S1 8
FIG. 3: FRONT PANEL CONTROLS 9
FRONT PANEL CONTROLS 10
FIG. 4: BACK PANEL CONTROLS 11
BACK PANEL CONTROLS 12
FIG. 5: SYSTEM BLOCK DIAGRAM 13
FIG. 6: SYSTEM BLOCK DIAGRAM (WITH EA, EW AND PN OPTIONS) 14
sYSTEM DESCRIPTION AND REPAIR PROCEDURE 15
PERFORMANCE CHECK SHEET 16

TABLE OF CONTENTS

WARRANTY 2
TABLE OF CONTENTS 3
FIG. 1: PULSE GENERATOR TEST ARRANGEMENT 4
GENERAL OPERATING INSTRUCTIONS 5
FIG. 2: PULSE GENERATOR TEST ARRANGEMENT 7
(AVX-S1 MODULE CONNECTED)CONNECTING THE AVO-9A-C TO THE AVX-S1 7
CONNECTING THE AVO-9A-C TO THE AVX-S1 8
FIG. 3: FUNCTIONAL EQUIVALENT CIRCUIT \& PACKAGE 9
FIG. 4: FRONT PANEL CONTROLS 10
FRONT PANEL CONTROLS 11
FIG. 5: BACK PANEL CONTROLS 12
BACK PANEL CONTROLS 13
POWER SUPPLY AND FUSE REPLACEMENT 14
PERFORMANCE CHECK SHEET 16

FIG. 1: PULSE GENERATOR TEST ARRANGEMENT (AVX-S1 MODULE REMOVED)

GENERAL OPERATING INSTRUCTIONS

1) The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed ten gigahertz.
2) The use of 40 dB attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than one Volt.
3) The TRIG output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some sampling scopes, a 30 dB attenuator should be placed at the input to the sampling scope trigger channel.
4) To obtain a stable output display the PRF control on the front panel should be set mid-range while the PRF range switch may be in either range. The front panel TRIG toggle switch should be in the INT position. The front panel DELAY controls and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired PRF by rotating the PRF control and by means of the PRF range switch.
5) The output pulse width is controlled by means of the front panel one turn PW control. The control should initially be set maximum clockwise and the pulse width adjusted using an oscilloscope.
6) The output pulse amplitude is controlled by means of the front panel one turn AMP control. The pulse width may change by several nanoseconds as the output amplitude is reduced from maximum to minimum. Therefore it is convenient to first set the desired amplitude and then set the desired pulse width. Rotation of the PW pot causes the position of the falling edge of the pulse to change.
7) Some properties of the output pulse may change as a function of the amplitude pot setting. For some demanding applications, it may be desirable to use a combination of external attenuators and the amplitude pot to achieve the desired output amplitude.
8) An external clock may be used to control the output PRF of the AVO unit by setting the front panel TRIG toggle switch in the EXT position and applying a 50 ns or wider. TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must also be triggered by the external clock.
9) To voltage control the output pulse width, set the rear panel switch in the EXT position and apply 0 to +10 V to connector $\mathrm{A}\left(\mathrm{R}_{\mathbb{N}} \geq 10 \mathrm{~K}\right)$. (EW option).
10) To voltage control the output amplitude, set the rear panel switch in the EXT position and apply 0 to +10 V to connector $\mathrm{B}\left(\mathrm{R}_{\mathrm{iN}} \geq 10 \mathrm{~K}\right)$. (EA option).
11) The unit can be converted from 120 to $240 \mathrm{~V} 50-60 \mathrm{~Hz}$ operation by adjusting the voltage selector card in the rear panel fused voltage selector-cable connector assembly.
12) For additional assistance:

Tel: (613) 226-5772
Fax: (613) 226-2802

FIG. 2: PULSE GENERATOR TEST ARRANGEMENT
(AVX-S1 MODULE CONNECTED)

CONNECTING THE AVO-9A-C TO THE AVX-S1

1) A general description of the AVX-S1 module is given in the enclosed data sheet.
2) The AVX-S1 module should be connected to the AVO-9A-C mainframe via the supplied 24" RG174 cable. The diode current may be monitored by connecting the MI and MV output ports to the sampling scope via 20 dB attenuators. The output amplitude (V_{MI} and V_{MV}, Volts) and diode current ($\mathrm{I}_{\mathrm{D}}, \mathrm{Amp}$) are related as follows:

$$
\mathrm{I}_{\mathrm{D}}=0.2\left(\mathrm{~V}_{\mathrm{MI}}-\mathrm{V}_{\mathrm{MV}}\right)
$$

The laser diode voltage is given by the following:

$$
V_{D}=10 V_{M V}
$$

3) The laser diode plugs directly into the socket on the side of the AVX-S1 module. CAUTION: The laser diode cathode must mate with Pin 1 while the anode must mate with Pin 4. The diode may be damaged if the above connections are not achieved. Pins 2,3 and 4 are all grounded.
4) A forward DC bias may be applied to the laser diode by connecting a DC potential of 0 to -5 Volts to the DC solder terminal. The application of a small forward bias often yields a more ideal diode current waveform (as observed on the MI port). Note that the DC port must be shorted to ground if a bias is not applied.

FIG. 3: FUNCTIONAL EQUIVALENT CIRCUIT \& PACKAGE

The AVXS senies of bise inseartion undts is designed for appiling pulse or PF CW signais and DCblas to laser diodea whith traentinto a high quality soeket inctuded on the moumt. The blas insertion module includes the necessery networks to matich the leser diode to the pulse of RF souree as wall as notworks for applying OCblat to the dioct. Optional outputs allow for monitoting of the laser diode current, voltage and a phowe detector diode output Feadly available socket contigurations (TO-18, TO-5, TO-3, OP-3) are shown an the following page. Note that the laser ctiodes are net supplied with the AVX-S series.
The AVXS saries inetudes 3 basic modele namely the AVKSI, AVX-S2 and the AVX-S3. The oarie funcuianal equivatent creuit for the three models are shown betow. Mocel AVX-S1 is speciftitly designed for ultra high-speed, fow current applieatons (itse thrmes as low as 200 psec, bendwidtise to $1 \mathrm{CHt}, \mathrm{I}<1.0 \mathrm{ampera)}$. Moctat AVX-S1 is employed in the AVO-AC senies of diode drivers. Modet AVX-S2 is intended far apppicarion with sise times greater than 2 msec and currents above 1 amperc. Moded AVXS3 is specificully designed for use with the AVO-2 and AVO-5 series pulse genmaters (which provide currents in the range of 5 to 50 ampereat).

The input series blocting capacitor in Moctals AVKS1 and AVXS2 'presemts a low impedence to FFF CN signais and to baseband pulses while the shum indicutor presents a ingh impedance to fF (or pulse) signats but an excremety low impadance to the OC bias. The resistor in senes with the iaser diocle is selected so insurs that the impodanet at the \mathbb{N} port ta $\mathbf{S O}$ otrms. Normally a laser diecte resstance of 3 otrms is assumed.

The oprionat diode curront monitor (M_{1}) provides an outpur wavatorm (to 50 ohrns) which is an attemuated replica of the laser dioce currem. The output ampitucte (NML voltsi) and diode cursem (ID, Amps) are rolutad as follows:

$$
\text { SI: } \quad I_{D}=0.2 V_{M I} \quad \text { SR: } I D=V_{M I}
$$

The optional diode voltage manitop (MV) provides an output wavetorm inas may be retuted to tha voltage across the laser diode (No. vatts) as followt:

$$
\text { Si: } V_{D}=10 N_{M V} \cdot V_{M D} \quad-8: \quad V_{D}=10 V_{M V}
$$

- Socket mounting of laser diodes
- Peak currents from 100 mA to 48 Amps
- Puse widths from 0.4 to 200 nsec
- Rlse times from 0.21020 nsec
- Puss ar CW RF
- Dlode current and voltage monitor options

Moded AVX-S3 is available in four differman verdons IAVSSSA AVX. Sxem. AVKS3C and AVX-S30] all of which inchude a maxening yrans. frimar which eftectively boosts the laser diode curremt bayond thas provided by the putse source.
Model AVX SBA is designed to match 50 ohm pulse genarnurs such as Model AVO-2Cis 12 drm losis with peak eurnems of 5 amperes. Consequanty, the resictior fig in the equivalemerceuit for this model is 10 ohin. This restrior is aecessible in all AVX-53 modets and may be chungad by the user (by desotderingy). The series resimanee of
 sourca impedance dividec by N^{2}. Consequenty, if the series resisthenep of the fasar difode is selatively hlath, it then may be nacessary to rechee the value of Rg, Model AVX-S38 is dexigned to maten 50 chrin putse generutors such as Modet AVO-S-C io 3 arms and wili provide peate diocte curtents up to 28 amperss. Modet AVXS3C is designect to mateh Alodets AVO-2N-C and AVO-2-C 125 atm source impodance) to toad restatance of about 5 otrma and will provide peat difote curnerts as ifoth as 10 amperes. Moded AVXS30 is dengraed for use with Moced AVO-SE-C and will provide up to 48 enppers of diode current.
Two optionad SMM cutput cornsecters provide attemurted coincidem raptiens of the drecte currear (HMI option) and diode vatuge (MM cpution) as par the tollowing redationstips (Arppe, Votrs):

$$
I_{D}=\frac{10 V_{M I}}{A_{3}} \quad V_{D}=10\left(N_{M V} \cdot V_{M A}\right)
$$

All AVK-St unita inctuda two toct long inpur eables with SMA mate connewior.
When ordening members of the AVX-S family, the customer must specity the bacie modtel mumber (09. AVXSI) and the following additiona lotormation.
a) Dlode pastenge type (og. TO-18) and the required pin cenneco tons (cg. aroce, catrecte, ground exef. See the following page for raadly aveinhto package mounting. Commex Avtech for apecial of difterema packegon.
b) Deaired optans (cog $+\mathrm{ML},+\mathrm{NV}, \mathrm{MO})$.

Contace Avtech for your spectal requirements.

SPECIFICATIONS

AVX-S SEATE:

Moctel:	AYKSI	AVXS2	AMESEA	ANCS38	AVXosec	AN-530
Peak dioce currant:	400 mA	2 Anps	5 Antas	23 Amps	10 Amps	48 Amos
Max. input amptitucte:	20 volts	100 vorts	150 voits	350 vats	150 vatis	150 vars
Pulse wrdth (nsec):	04.200	1-1000	2-109	2-100	2-100	$5 \cdot 500$
Fise time insect:	02	05	05	1.0	05	20
Pulse PRF ranag:	OC. 0.5 GHz	DC. 100 MHz	DC. 10 MHz	DC-10 MHz	DC. 10 MHz	DC. 1 MHs
CW frequency rence:	110 MHz - 1.0 GHz	1.200 M	-	-	-	-
Max. bias current:	100 mA					
Max. blas voltaos:	50 vals	50 vorts	So vors	50 vats	50 vetts	50 vors
Inout imosdance:	50 onres \|	50 ORTs	50 antrs	Soantis	25017	12 arms
N :	- 1	-	2	4	2	4
Ps ionmsi:	- 1	*	10	3	5	07
IN connactor:	SMA					
Montor connector:	SMA					
Ejas connecior:	Solder oin					
Size inn:	$1.6 \times 2.8 \times 30$					
Mateflai:	Cast aturnmum. blue enarnet					
Mounnno:	ADY					

TPPICAL PACKAGES

FIG. 4: FRONT PANEL CONTROLS

FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies basic prime power to all stages.
(2) PRF Control. The PRF RANGE and PRF controls determine (3) output PRF as follows:

PRF MIN PRF MAX
Range $1 \quad 100 \mathrm{~Hz} \quad 1 \mathrm{kHz}$
Range $2 \quad 1 \mathrm{kHz} \quad 10 \mathrm{kHz}$
Range $3 \quad 10 \mathrm{kHz} \quad 100 \mathrm{kHz}$

Range $4 \quad 100 \mathrm{kHz} \quad 1 \mathrm{MHz}$
(4) DELAY Controls. Controls the relative delay between the reference
(5) output pulse provided at the TRIG output (6) and the main output (9). This delay is variable over the range of 0 to at least 500 ns .
(6) TRIG Output. This output precedes the main output (9) and is used to trigger the sampling scope time base. The output is a TTL level 100 ns (approx.) pulse capable of driving a fifty Ohm load.
(7) PW Control. A one turn control which varies the output pulse width from 0 to 4 ns .
(8) AMP Control. A one turn control which varies the output pulse amplitude.
(9) OUT. SMA connector provides output to 50 Ohm load.
(10) EXT-INT Control. With this toggle switch in the INT position, the PRF of the AVO unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVO unit requires a 0.2 us TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.

FIG. 5: BACK PANEL CONTROLS

BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (0.25 A SB).

POWER SUPPLY AND FUSE REPLACEMENT

This instrument has three fuses (plus one spare). One, which protects the $A C$ input, is located in the rear-panel power entry module, as described in the "Rear Panel Controls" section of this manual. If the power appears to have failed, check the AC fuse first.

The other two fuses (plus one spare) are located on the internal DC power supply, as shown below:

The spare fuse may be used to replace one of the other fuses, if required.
The three fuses on this circuit board are 0.5A slow-blow fuses, Littlefuse part number R452.500. (This fuse can be ordered from Digikey, www.digikey.com. The Digikey part number is F1341CT-ND).

If you suspect that the DC fuses are blown, follow this procedure:

1. Remove the top cover, by removing the four Phillips screws on the top cover and then sliding the cover back and off.
2. Locate the two "Power OK" LEDs on the power supply circuit board, as illustrated above.
3. Turn on the instrument.
4. Observe the "Power OK" LEDs. If the fuses are not blown, the two LEDs will be lit (bright red). If one of the LEDs is not lit, the fuse next to it has blown.
5. Turn off the instrument.
6. If a fuse is blown, use needle-nose pliers to remove the blown fuse from its surface-mount holder.
7. Replace the fuse.
