AVTECH ELECTROSYSTEMS LTD.
 NANOSECOND WAVEFORM ELECTRONICS ENGINEERING • MANUFACTURING

P.O. BOX 265

- OGDENSBURG

13669
(315) 472.5270

BOX 5120 STN. "F"'
\# OTTAWA, ONTARIO
CANADA K2C 3H4
(613) 226.5772

TELEX 053.4591

INSTRUCTIONS

MODEL AVO-7-C-FW-EA-EW-RDI FULSE GENERATOF
S.N.

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner and after prepaid return by the original owner, this Avtech product is found to be defectives Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or 1 iability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1 PULSE GENERATOR TEST ARRANGEMENT

1) The equipment should be connected in the general fashion shown above.
2) The sync output channel provides TTL level signals. To avoid overdriving the TRIG input channel of some sampling scopes, a 30 db attenuator should be placed at the input to the sampling scope trigger channel.
3) The desired output polarity is selected by means of the front panel PGLARITY switch. With the POLARITY switch in the F position, the negative output pulse generator is rendered inactive. Likewises with the POLARITY switch in the N positiong the positive pulse generator is rendered inactive.
4) The output terminals of the pulse generator module consists of a short length of microstrip transmission line protruding from the module chassis. The OUT terminal is the center conductor which is bounded on both sides by the graund plane (see below):

The 1 oad should be connected between the OUT and GIVD terminals using very short leads (*゙ 0.5 cm). The voltage across the load may be monitored by means of a high impedance scope probe. The current may be monitored using a current probe or a current transformer arrangement.

Notes:

1) At max duty cycle and amplitude the load must dissipate日 watts.
2) Reverse diode load for negative pulse generator.
3) Max 1 gad voltage must not exceed 20 volts.

Take care to insure that during soldering the DUT conductor is not shorted to the chassis. Also, use minimal heat when soldering.
5) To obtain a stable display, the PRF range switch should be set in the LOW position and the PRF control set max clockwise. The PW FANGE switch should be in Fange 1 and the FW control set max counterciockwise. The front panel TRIG toggle switch should be in the INT position. The DELAY contrals and the scope triggering controls are then adjusted to obtain a stable output. The scope may then be used to set the desired FFF, PW and AMP. CAUTION: The unit may fail if the qutput duty cycle exceeds 1% Consequently, at 50 Hz the output FW must te 200 usec or 1 ess while at 5 KHz the PW must be less than 2 usec.
6) The output pulse widths for the positive and negative outputs are controlled by means of the front panel one turn FW control and 3 position FW RANGE switch.
7) The output pulse amplitudes for the positive and negative outputs are controlled by means of the front panel one turn AMP F and AMP N controls. The pulse generator will supply up to 20 amperes to a 1 aad voltage as high as 20 volts. The output current can be controlled by means of the AMP cantral and by cantraliing the series laad resistance. A net series resistance of about 1 to 2 ohm is recommended. This may be fabricated fram paralleling multiple 0.5 watt carbon composition resistors to yield a 1 to 2 ohm (approx.) B watt 1 rad.
B) Ta valtage control the output pulse width, remove the jumper wire between banana plugs A and B on the back panel and apply 0 to +10 V to connector B (Riw $\geqslant 10 K$). (option).
9) To voltage contral the output amplitude, remove the jumper wire between banana plugs A and E on the back panel and apply 0 to +10 V to connector B ($R_{\text {IN }} \geqslant 10 \mathrm{~K}$). (option).
10) An external clock may be used to control the output FFF of the AVO unit by setting the front panel TRIG toggle switch in the EXT position and applying a 0.2 usec (approx.) TTL level pulse to the TRIG BNC connector input. For operation in this mode, the scope time base must alos be triggered by the external clock father than from the SYNC output.

Fig. 2

(1)

TRIG Gutput. This output precedes the main output (5) and (6) and is used to trigger the scope time base. The output is a TTL level 100 nsec (approx.) pulse capable of driving a fifty ohm load. The external trigger signal (0.2 usec. TTL) is applied at this input when the EXT-INT toggle switch is in the EXT position.
(6) GUT F Connector. A multi pin connector which attaches the 2 foot cable from the positive pulse generator module to the main frame.
(7) FW Control. A one turn control and 3 position range switch which varies the positive output pulse width from 0.2 usec to 200 usec. The minimum and maximum FW for each range and the corresponding maximum PRF are as follows. Note that the unit may fail if operated at duty cycles exceeding the above.

PW min

Range 1

Range 2

Range 3
0.2 usec PRF max 5 KHz
2.0 usec PRF max 5 KHz

20 usec PRF max 500 Hz

PW max
2.0 usec PRF max 5 KHz

20 usec
PRF max 500 Hz

200 usec
FRF max 50 Hz
(8) AMP Control. A one turn contral which varies the positive output pulse amplitude from 0 to 20 V to a 1 to 2 ohm 1 gad.

POLARITY Control. With the switch in the P position, the negative output pulse generator is rendered inactive. With the switch in the \mathbb{N} positiong the positive output pulse generator is rendered inactive.
(10) EXT-INT Control. With this toggle switch in the INT position, the FRF of the AVD unit is controlled via an internal clock which in turn is controlled by the FRF and PRF FINE controls. With the toggle switch in the EXT position, the AVO unit requires a 0.2 usec TTL 1 evel pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode; the scope time base must be triggered by the external trigger source.

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOR, VOLTAGE SELECTOR. The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse.
(2) To voltage control the output pulse width, remove the jumper wire between banana plugs A and B and apply 0 to +10 V to connector $\mathrm{B}\left(\mathrm{R}_{\mathrm{IN}} \geqslant 10 \mathrm{~K}\right)$.
(3) To voltage contral the output amplitudes remove the jumper wire between banana plugs A and B and apply O to +10 V to cannector B ($\mathrm{RyN} \geqslant 10 \mathrm{~K}$).
(4) 0.5 SB fuse limits the DC current supplied to the output stage.

AVO-7-EA-EW-C POWER SUPPLY

The AVロ－7－C unit consists of the following basic modules：
1）AVG－7～FG pulse generator modules（positive and negative）
2）AVロ－7－CL clock module
3）AVロ－7－PW pulse width control module
4）AVロ－7－PSA power supply module
5）AVロ－7－PSB power supply module
6）$+24 V$ power supply board
7）$\pm 30 \mathrm{~V}$ power supply board
The modules are interconnected as shown in Fig． 4.
In the event of an instrument malfunctiong it is most likely that either of the rear panel fuses have blown or that some of the output switching elements（SLIOT and SL12T）may have failed due to an output short circuit condition or to a high duty cycle condition．The switching elements may be accessed by removing the cover plate on the bottom side of the－PG module The caver plate is removed by removing the faur counter sunk 6－32 Phillips screws．NDTE：First turn off the prime power：The elements may be removed from their sockets by means of a needle nosed pliers after removing the four counter sunk 2－56 Phillips screws which attach the small aluminum heat sinks to the body of the AVD－7－PG module．The SLIOT and SLI2T are selected VMOS power transistors in a TO 220 packages and may be checked on a curve tracer．If defective，replacement units should be ordered directly from Avtech．When replacing the SLIOT and SL12T switching elements，take care to insure that the short lead（of the three leads）is adjacent to the black dot on the chassis． The SLIOT and SLi2T elements are electrically isalated fram the small aluminum heat sinks but are bonded to the heat sinks using WAKEFIELD TYPE 155 HEAT SINK ADHESIVE．If the switching elements are not defective，then the four Phillips screws on the back panel should be removed．The top cover may then be slid off and the operation of the clock and power supply modules checked．The clock madule is functioning properly if：
a） 0.1 usec TTL level outputs are observed at pins 2 and 3.
b）The PRF of the outputs can be varied over the range of 2 Hz to 5 KHz using the PRF controls．
c）The relative delay between the pin 2 and 3 outputs can be varied by at least 1 usec by the DELAY control．

The sealed clock module must be returned to Avtech for repair or replacement if the above conditions are not observed．The AVロ－7－PSA module supply 0 ta ± 30 valts to the－PG modules as
the AMP control is varied. Replace units if the output does not vary over this range.

The AVロ-7-FW module provides an output $F W$ at Pin 6 which controls the output PW of the PG modules from 0.2 to 200 usec. Replace if defective. The AVD-7-PSB module supplies $15 V$ DC to various other modules.

