AVTECH ELECTROSYSTEMS LTD.

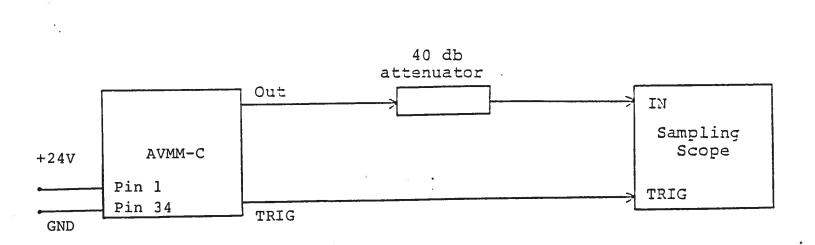
NANOSECOND WAVEFORM ELECTRONICS ENGINEERING - MANUFACTURING

P.O. BOX 265 OGDENSBURG NEW YORK 13669 (315) 472-5270 BOX 5120 STN. "F" OTTAWA, ONTARIO CANADA K2C 3H4 (613) 226-5772 TELEX 053-4591

INSTRUCTIONS

MODEL AVMM-C-NIM PULSE GENERATOR

S.N.:


WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

g. 1 PULSE GENERATOR TEST ARRANGEMENT

٠.

1

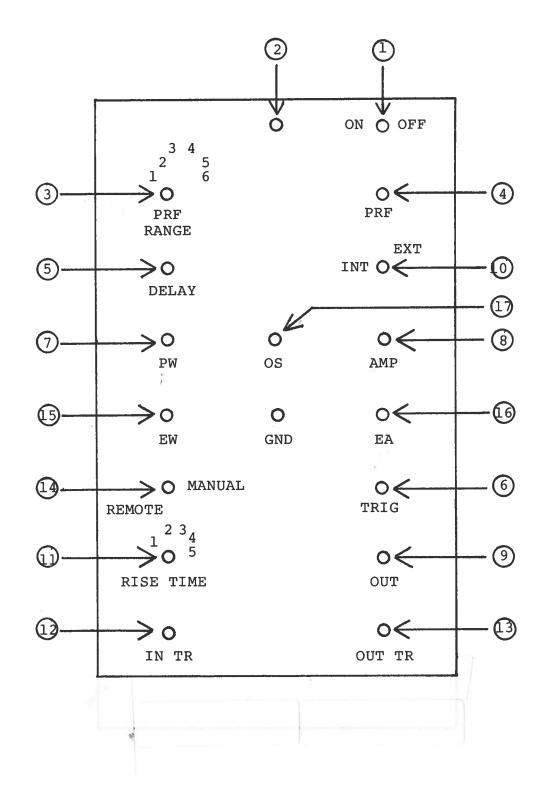
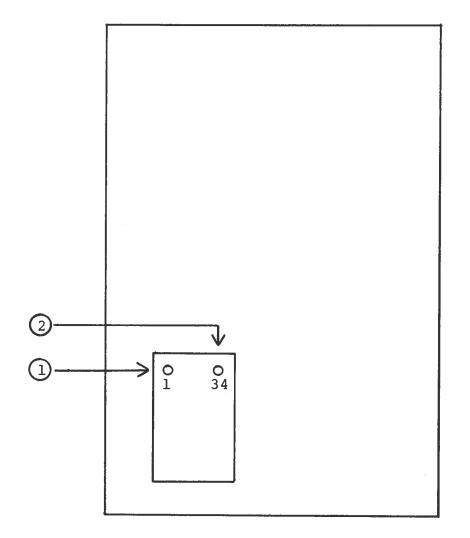

:

Fig. l

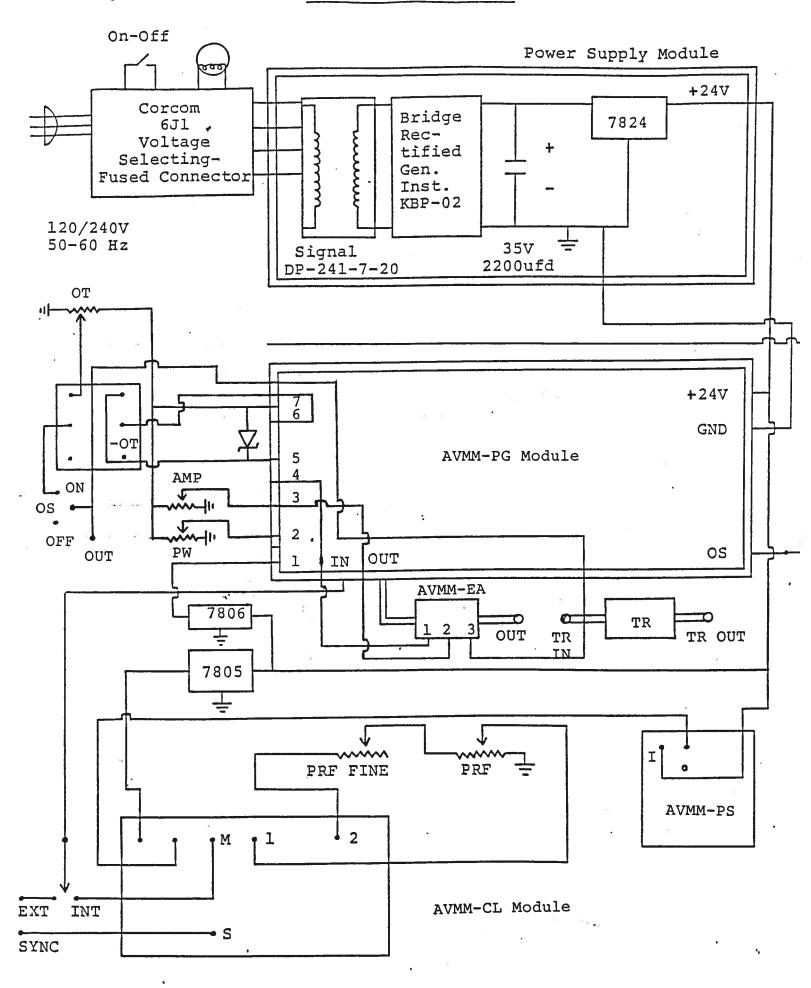
Notes:

- The bandwidth capability of components and instruments used to display the pulse generator output signal (attenuators, cables, connectors, etc.) should exceed ten gigahertz.
- 2) The use of 40 db attenuator at the sampling scope vertical input channel will insure a peak input signal to the sampling scope of less than one volt.
- The TRIG output channel provides a 0.2 volt 10 nsec pulse.
- 4) To obtain a stable output display the PRF control on the front panel should be set mid-range while the PRF range switch may be in either range. The front panel TRIG toggle switch should be in the INT position. The front panel DELAY control and the scope triggering controls are then adjusted to obtain a stable output. It is recommended that the DELAY control first be set max counter clockwise and then turned clockwise until a stable display is obtained. The scope may then be used to set the desired PRF by rotating the PRF control and by means of the PRF range switch. The stability of the display on some sampling scopes is very sensitive to the trigger delay setting, particularly at high PRF (eg. 10 to 25 MHz). If necessary, consult your sample scope instructions manual for the proper triggering method.
- 5) The output pulse width is controlled by means of the front panel one turn PW control. The control should initially be set maximum clockwise and the pulse width adjusted using an oscilloscope. Rotation of the PW pot causes the position of the falling edge of the pulse to change. For the PRF range of 0 to 25 MHz, the output pulse width is variable over the range of 0 to 5 nsec.
- 6) To voltage control the output pulse width, set the front panel two position switch in the REMOTE position and apply 0 to +10V to the EW solder terminal. ($R_{IN} > 10K$). (EW option).
- 7) The output pulse amplitude is controlled by means of the front panel one turn AMP control.
- 8) To voltage control the output amplitude, set the front panel two position switch in the REMOTE position and apply 0 to +10V to the EA solder terminal. ($R_{IN} \ge 10K$). (EA option).
- 7) To DC offset the output pulse connect a DC power supply set to required DC offset value to the front panel terminals marked O.S. The maximum attainable DC offset voltage is ±50 volts.

- 10) The unit provides a 300 psec rise time at the OUT port. The rise and fall time can be set at approximately 0.3, 0.4, 0.7, 1.2 and 2.0 nsec using the five position front panel TR switch. To use the switch connect the OUT port to the TR_{IN} port. The variable rise time output is then available at the TR_{OUT} port.
- 11) An external clock may be used to control the output PRF of the unit by setting the front panel TRIG toggle switch in the EXT position and applying a 10 nsec (or wider) TTL level pulse to the TRIG BNC connector input. The AVMM unit triggers on the rising edge of the input trigger pulse. For operation in this mode, the scope time base must also be triggered by the external clock rather than from the TRIG output.
- 12) <u>WARNING</u>: Model AVMM-C may fail if triggered at a PRF greater than 25.0 MHz.
- 13) The Model AVMM-C pulse generator can withstand an infinite VSWR on the output port.
- 14) Dual Polarity Option. To invert the output of the AVMM unit, connect the AVX-2-T unit to the OUT port. An inverted pulse is then obtained at the OUT port of the AVX-2-T unit. To offset the inverted pulse, connect a DC supply to the DC terminal of the AVX-T-2 unit.



- (1) <u>ON-OFF Switch</u>. Applies basic prime power (+24V) to all
 (2) stages and causes LED (2) to shine.
- (3) <u>PRF Control</u>. PRF RANGE and PRF controls determine
 (4) output PRF as follows:


		PRF	MIN	PRF	MAX
Range	1	10	KHz	50	KHz
Range	2	50	KHz	250	KHz
Range	3	185	KHz	650	KHz
Range	4	650	KHz	3.3	MHz
Range	5	3.3	MHz	13.3	MHz
Range	6	13	MHz	25	MHz

- (5) <u>DELAY Control</u>. Controls the relative delay between the reference output pulse provided at the TRIG output (6) and the main output (9). This delay is variable over the range of 0 to at least 100 nsec.
- (6) <u>TRIG Output/Input</u>. This output precedes the main output (9) and is used to trigger the sampling scope time base. The output is a 200 mV 10 nsec (approx) pulse capable of driving a fifty ohm load. The external trigger signal is applied at this input when the EXT-INT toggle switch is in the EXT position.
- (7) <u>PW Control</u>. A one turn control which varies the output pulse width.
- (8) <u>AMP Control</u>. A one turn control which varies the output pulse amplitude from 0 to max output to a fifty ohm load.
- (9) <u>OUT Connector</u>. SMA connector provides 300 psec rise time output to a fifty ohm load.
- (10) <u>EXT-INT Control</u>. With this toggle switch in the INT position, the PRF of the AVMM unit is controlled via an internal clock which in turn is controlled by the PRF controls. With the toggle switch in the EXT position, the AVMM unit requires a 10 nsec (or wider) TTL level pulse applied at the TRIG input in order to trigger the output stages. In addition, in this mode, the scope time base must be triggered by the external trigger source.
- (11) <u>RISETIME TR (Option)</u>. A five position switch which provides output rise and fall times of about 0.3, 0.4, 0.7, 1.2 and 2.0 nsec.
- (12) <u>TR IN</u>. To use variable rise time option connect OUT port to TR IN port.

- (13) <u>TR OUT</u>. With OUT port connected to TR IN port, provides output to 50 ohm load.
- (14) <u>REMOTE-MANUAL SWITCH</u>. To control pulse width or amplitude using front panel one turn controls, this switch should be in the MANUAL position. To control pulse width and amplitude using 0 to +10 volt control voltages, this switch should be in the REMOTE position.
- (15) <u>EW Terminal</u>. To voltage control the output pulse width, set switch 14 in the REMOTE position and apply 0 to +10 volts to the EW terminal.
- (16) <u>EA Terminal</u>. To voltage control the output amplitude, set switch 14 in the REMOTE position and apply 0 to +10 volts to the EA terminal.
- (17) <u>OS Terminal</u>. To DC offset the output pulse, connect a DC power supply set to the required value to the OS terminal (0 to <u>+</u>50 volts, 200 mA max).

- (1) PIN 1. Apply +24 volts 800 mA max.
- (2) PIN 34. Ground.

Schroff 06.20.88

-EW EA -OS -PN

-TR