AVTECH ELECTROSYSTEMS LTD.

NANOSECOND WAVEFORM ELECTRONICS

ENGINEERING - MANUFACTURING
P.O. BOX 265 OGDENSBURG NEW YORK 13669 $13151472-5270$

BOX 5120 . STN. "F"
这 OTTAWA. ONTARIO CANADA K2C 3 H 4 TEL: (613) 226-5772 FAX: (613) 226-2802

INSTRUCTIONS

MODEL AV-107E-C-F-FCE FLILSE GENERATOR
S.N.

WARFANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation or liability assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

Fig. 1

1) Set AMF DC and AMF SINE controls both maximum CCW.
2) Set rear panel DC DN-OFF switch on ON position.

उ) Cannect diode to be tested in series with o. 1 ohm 10 watt resistor Monitor voltage across resistor to deduce diode current. Five volts resistor valtage corresponds to 50 amps diode rurrent $(i=e . \quad$ Iorode $=10$ VR). Alternatively, a current probe may be used in which case the 0.1 resistor may be omitted.
4) If coaxial cable such as figsb is used to connect the diode jig to the $A V-107 E$ mainframeg the cable length should not exceed about two feet. If a longer cable is required, then number 12 (or heavier) hook up wire should be used.
5) Set $A V-107 E-C$ control switch in the 0.8 Hz position and connect the AV-107E-C SYNC output to the scope TRIGGER input. Set the $A V-107 E-C$ delay control mid range and set the scope on $+E X T$ trig mode and time base on 5 ms/div. Set scope vertical on 1 volt/div <i.e. 10 amp/div).
6) Apply prime power to AV-107E-C (note that unit was shipped with rear panel voltage selector card in 240 volt position).
7) Adjust seope triggering controls to insume that scope is triggering.
8) For a diode DC current of 1.0 ampere, set the DC AMF contral on 9.9 (see Fig. 2).
7) For a diode peak sinusaid current of 30 amperes: set the SINE AMF control on 7.1 (see Fig. 3). A zero to peak amplitude of 3 valts should be observed on the scope.
10) For single pulse operation, set the AV-107E-C selector switch on the single pulse position and push the single pulse button for each output pulse.
11) The selector switch may also be set in the $0.44 \mathrm{~Hz}, 0.22$ Hz or JO Hz position. Howeverg when set in the 30 Hz position, the unit operates at a FFF of about 30 Hz and 50 the $A M F$ sine setting should not be set higher than 4.0 or the output stage may be overloaded sand the diode may be damagedy. The calibration curve given in Fig. \mathcal{E} is not valid when the selector switch is set in the Jo Hz position.
12) Nate that the AMF DC control varies the output DC current over the range of 100 mA ta 1.05 amperes. If a DC current of O is required, the rear panel DN-DFF switch may be set in the OFF position.
13) If additional information or assistance is required:

Telephone: (613) 226-5772
Fax: (613) 226-2802

Fig. 2 FRONT PANEL CONTROLS

(1) ON-OFF Switch. Applies prime power to all stages.
(2) OUT: BNC connector provides a 0 to +50 Ampere 8.3 ms wide simusaid constant current to a load voltage in the range of 0 to +10 volts. Also provides 100 mA to 1.0 ampere $D C$ constant current to 0 to +5.0 valts laad voltage.
(J) AMF SINE. Ten turn contral varies sinusaid output amplitude from 0 ta +50 amperes to load voltage in the range of 0 to +10 volts (see Fig. 3).
(4) AMF DC. Ten turn contral varies DC contral curfent output amplitude from 100 mA to 1.10 amperes (to laad voltage in the range of 0 to 5 volts). See Fig. 2 .
(5) SELECTOF SWITCH. Five position switch controls Fulse
(6) Fiepetition Frequency of output sinusaid as fallows:
A) Single Fulse: Frovides output pulse for each push of SINGLE FULSE button (6).
B) $0.8 \mathrm{~Hz}:$ Dutput sinusaid FRF of about 0.8 Hz .
C) $0.4 \mathrm{~Hz}:$ Dutput sinusaid FFiF of about 0.4 Hz.
D) $0.2 \mathrm{~Hz}:$ Dutput sinusaid PRF of about 0.2 Hz .
E) $\quad 3 \mathrm{~Hz}$: Sets output sinusoid FFF at about 30 Hz. Feak output amplitude must not enceed 10 Amperes. AMF SINE pot setting must not exceed 4.0
(7) SYNC. ENC connector provides TTL level 0. 2 us wide output pulse (to $F_{L} \geqslant 50$ ohms) for scope triggering. TTL pulse lags leading edge of sinusaid output by 10 Ls to 8.5 ms depending on setting of DELAY pot (8).
(B) DELAY. Controls relative delay of SYNC TTL output pulse with respect to leading edge of sinusoid output pulse (from 10 us to 8.5 ms).

Fig. 3
BACK PANEL CONTROLS

(1) FUSED CONNECTOF, VOLTAGE SELECTOF: The detachable power cord is connected at this point. In addition, the removable cord is adjusted to select the desired input operating voltage. The unit also contains the main power fuse (1.0A SB).
(2) 2.0A5B. Fuse which protects the output stage if the output duty cycle rating is exceeded.
(3) DC DN-DFF. When in $D N$ position front panel AMF DC control varies DC output current from 0.1 to 1.1 Amp. When in OFF position, DC output current is fixed at 0 .
(4) To access interior of instrument, remove four Fhillips screws on back panel and then slide top lid back sand

The AV-107E-C-F-FCE consists of the following basic modules:

1) AV-107E-FCB-FG-SINE simusaidal constant current pulse module
2) AV-1O7E-FCE-T driver and pulse width control module
3) FCB-DC: DC constant current contral module
4) FCD-SYNC: Delay timing module
5) +36V DC power supply
6) +5.BV DC power supply

The modules are interconnected as shown in Fig. 4. The key waveforms at module outputs and inputs are also shown in Fig. 4. In the event af an instrument malfunction (i.e. no output) it is most likely that the rear panel 2.0 A SB or the 1.OA $5 E$ line fuses may have gone. If the fuses are ok and there is still no output, remove the instrument top cover and check the two waveforms w1 and W2. Also, check the $+5 . \mathrm{BV}$, $+24 V$ and +36 volt power supply output levels. If the waveforms and levels are not as specified in Fig. 4, then call Avtech for further assistance.

Tel: (613) 226-5772
Fa\%: (613) 226-2802
s-chroff 01.28 .91

