P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: 888-670-8729 (USA \& Canada) or +1-613-686-6675 (Intl) FAX: 800-561-1970 (USA \& Canada) or +1-613-686-6679 (Intl)
info@avtechpulse.com - http://www.avtechpulse.com/

BOX 5120, LCD MERIVALE
OTTAWA, ONTARIO CANADA K2C 3H5

PERFORMANCE CHECKSHEET

Model: AVO-9A4-B-P0-N-DRXA-VXI-R5
Type: Ultra-High-Speed Laser Diode Driver
S.N.: 13608

Date: September 26, 2017
Basic specifications: \rightarrow

Test Waveforms

Mainframe output into 50 Ohm load at 10 kHz , $10 \mathrm{~ns},-40 \mathrm{~V}$,

2 ns/div. $20 \mathrm{~V} /$ div ($200 \mathrm{mV} / \mathrm{div} \times 40 \mathrm{~dB}$):

Output Amplitude: up to -43 V , to 50Ω
Pulse Width (FWHM): $1-10$ ns
Rise Time (20\%-80\%): ≤ 500 ps
Fall Time ($80 \%-20 \%$): $\leq 750 \mathrm{ps}$
PRF: $\quad 1 \mathrm{~Hz}-150 \mathrm{kHz}$
Jitter, Stability: OK
Prime Power: $\quad 100-240 V$ AC, $50-60 \mathrm{~Hz}$.

Mainframe output into 50 Ohm load at 10 kHz , < 1 ns, -40 V ,

2 ns/div. $20 \mathrm{~V} /$ div ($200 \mathrm{mV} / \mathrm{div} \times 40 \mathrm{~dB}$):

Test method: Short leads are soldered across two 10Ω chip resistors in parallel. A coaxial cable is soldered across the resistor. The signal lead is inserted into the anode pin socket. The ground lead is inserted into one of the other pin sockets (which are grounded). The total effective resistor is $5 \Omega \| 50 \Omega\left(R_{\text {sCope }}\right)=4.5 \Omega$.

Top: Voltage measured across the resistor in response to a $40 \mathrm{~V}, 10 \mathrm{~ns}$ pulse. It should be approximately $(-40 \mathrm{~V} / 54.5 \Omega) \times 4.5 \Omega=+3.3 \mathrm{~V}$, which agrees with the observed waveform. $2 \mathrm{~V} / \mathrm{div}$ ($=200 \mathrm{mV} /$ div $\times 20 \mathrm{~dB}$), $2 \mathrm{~ns} /$ div.

Top: Same as waveform on the left, except with a pulse width of < 1 ns.

Bottom: Corresponding "MI" output.

Bottom: "MI" output, approximately +40V / 11. $2 \mathrm{~V} / \mathrm{div}$ (= $200 \mathrm{mV} / \mathrm{div} \times 20 \mathrm{~dB}$), $2 \mathrm{~ns} /$ div.

