P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265

TEL: 888-670-8729 (USA \& Canada) or +1-613-686-6675 (Intl) FAX: 800-561-1970 (USA \& Canada) or +1-613-686-6679 (Intl)
info@avtechpulse.com - http://www.avtechpulse.com/

BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H5

## PERFORMANCE CHECKSHEET

Model: AVO-9A5-B-P2-P-KTA-TRA
Type: Ultra-High-Speed Laser Diode Driver
S.N.: 13327

Date: September 1, 2015
Basic specifications: $\rightarrow$

## Test Waveforms

Mainframe output into 50 Ohm load at 1 MHz , $<1 \mathrm{~ns},+53 \mathrm{~V}$,

2 ns/div. 20 V/div (200 mV/div $\times 40 \mathrm{~dB}$ ):


Output Amplitude: up to +53 V , to $50 \Omega$
Pulse Width (FWHM): 1-10 ns
Rise Time (20\%-80\%): $\leq 500 \mathrm{ps}$
Fall Time ( $80 \%-20 \%$ ): $\leq 1 \mathrm{~ns}$
PRF: $\quad 1 \mathrm{~Hz}-1 \mathrm{MHz}$
Jitter, Stability: OK
Prime Power: $\quad 100-240 V$ AC, $50-60 \mathrm{~Hz}$.

Mainframe output into 50 Ohm load at 1 MHz , $10 \mathrm{~ns},+50 \mathrm{~V}$,

2 ns/div. $20 \mathrm{~V} /$ div ( $200 \mathrm{mV} / \mathrm{div} \times 40 \mathrm{~dB}$ ):



Top waveform: Voltage across the parallel combination of the $4.5 \Omega$ effective resistance. It should be approximately $(+50 \mathrm{~V} / 54.5 \Omega) \times 4.5 \Omega=$ +4.1 V in amplitude, which agrees approximately with the observed waveform.

Bottom waveform: "MI" output, approximately +50V / 11.

Both: $2 \mathrm{~ns} /$ div, $2 \mathrm{~V} / \mathrm{div}(200 \mathrm{mV} / \mathrm{div} \times 20 \mathrm{~dB}$ ).

Test method: Short leads are soldered across two $10 \Omega$ chip resistors in parallel. A coaxial cable is soldered across the resistor. The signal lead is inserted into the anode pin socket. The ground lead is inserted into one of the other pin sockets (which are grounded). The total effective resistor is $5 \Omega\left|\mid 50 \Omega\left(R_{\text {scope }}\right)=4.5 \Omega\right.$.


Mainframe output into 50 Ohm load at 1 MHz , $10 \mathrm{~ns},+50 \mathrm{~V}$, with $>1$ ns rise time mode (-TRA option)
$2 \mathrm{~ns} /$ div. $20 \mathrm{~V} /$ div ( $200 \mathrm{mV} /$ div $\times 40 \mathrm{~dB}$ ):


