INSTRUCTIONS

MODEL AV-156A-B-VXI-GE1-R5

+0.15A TO +1.5A, 0 TO +350V

PULSED CONSTANT CURRENT GENERATOR

WITH IEEE 488.2, RS-232, AND

ETHERNET CONTROL PORTS

SERIAL NUMBER: _____________
WARRANTY

Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been disassembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.

TECHNICAL SUPPORT

Phone: 888-670-8729 (USA & Canada) or +1-613-686-6675 (International)
Fax: 800-561-1970 (USA & Canada) or +1-613-686-6679 (International)

E-mail: info@avtechpulse.com
World Wide Web: http://www.avtechpulse.com
TABLE OF CONTENTS

WARRANTY..2

TECHNICAL SUPPORT...2

TABLE OF CONTENTS...3

INTRODUCTION...5

REGULATORY NOTES..7

- FCC PART 18..7
- EC DECLARATION OF CONFORMITY..7
- DIRECTIVE 2002/95/EC (RoHS)...8
- DIRECTIVE 2002/96/EC (WEEE)...8
- AC POWER SUPPLY REGULATORY NOTES...9
- FIRMWARE LICENSING...9

INSTALLATION..10

- VISUAL CHECK..10
- POWER RATINGS..10
- CONNECTION TO THE POWER SUPPLY...10
- PROTECTION FROM ELECTRIC SHOCK...11
- ENVIRONMENTAL CONDITIONS...12
- LABVIEW DRIVERS..12

FUSES...13

- AC FUSE REPLACEMENT..13
- DC FUSE REPLACEMENT..14
- FUSE RATINGS..14

FRONT PANEL CONTROLS...15

REAR PANEL CONTROLS...17

GENERAL INFORMATION..19

- BASIC PULSE CONTROL...19
- MONITOR CIRCUIT...21
- TRIGGER MODES...21
- GATING MODES...21
- MANUAL FEEDBACK..22

LOAD PROTECTION..23

- DRIVING DIODE LOADS...23
- ATTACHING AND DETACHING LOADS..23
The Model AV-156A-B-VXI-GE1-R5 pulsed constant current generator is capable of producing rectangular pulses with amplitudes as high as +1.5 Amperes, with < 300 us rise and fall times. The internal trigger source can be used to trigger the instrument at frequencies between 0.1 Hz and 10 Hz. An external TTL trigger pulse, a front-panel pushbutton, and a computer can also be used to trigger the instrument. The pulse width is variable from 1 ms to 50 ms. The maximum duty cycle is 2.5%.

The AV-156A-B-VXI-GE1-R5 is a current pulser. The current amplitude is largely independent of the load voltage. For proper operation, the load voltage ($V_{LOAD} = I_{LOAD} \times R_{LOAD}$) must lie in the range of 0 to +350V. This very wide compliance voltage range makes the AV-156A-B-VXI-GE1-R5 particularly useful for testing series arrays of LEDs.

These models feature front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40 character back-lit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete “snapshot” of all key instrument settings, and recall this setup at a later time.

This instrument is intended for use in research, development, test and calibration laboratories by qualified personnel.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>AV-156A-B-VXI-GE1-R5</td>
</tr>
<tr>
<td>Amplitude:</td>
<td>+0.15 to +1.5A</td>
</tr>
<tr>
<td>Pulse width (FWHM):</td>
<td>1 to 50 ms, subject to the duty cycle limit</td>
</tr>
<tr>
<td>Max. pulse repetition freq:</td>
<td>10 Hz, subject to the duty cycle limit</td>
</tr>
<tr>
<td>Max. duty cycle:</td>
<td>2.5%</td>
</tr>
<tr>
<td>Rise & fall time (20%-80%):</td>
<td>< 300 us</td>
</tr>
<tr>
<td>Load configuration:</td>
<td>Referenced to ground.</td>
</tr>
<tr>
<td>Polarity:</td>
<td>Positive - sources current.</td>
</tr>
<tr>
<td>Output current regulation:</td>
<td>< 2 % load voltage change from 0 Volts to maximum rated voltage</td>
</tr>
<tr>
<td>Load voltage range:</td>
<td>0 to +350V</td>
</tr>
<tr>
<td>Maximum average output power:</td>
<td>1.5A × 350V × 2.5% = 13.1 Watts</td>
</tr>
<tr>
<td>Overshoot:</td>
<td>< 10 %</td>
</tr>
<tr>
<td>Jitter:</td>
<td>< ±200 ps ± 0.03% of sync delay (Ext trig in to pulse out)</td>
</tr>
<tr>
<td>Trigger required:</td>
<td>External trigger mode: TTL, PW > 50 ns</td>
</tr>
<tr>
<td>Sync delay:</td>
<td>0 to ±1.0 seconds (Sync out to pulse out)</td>
</tr>
<tr>
<td>Sync output:</td>
<td>+3 Volts, 100 ns, will drive 50 Ohm loads</td>
</tr>
<tr>
<td>Settings resolution:</td>
<td>The resolution of the timing parameters varies, but is always better than 0.15% of the set value. The amplitude resolution is typically 0.02% of the maximum amplitude.</td>
</tr>
<tr>
<td>Settings accuracy:</td>
<td>Typically ±3% after 10 minute warmup. For high-accuracy applications requiring traceable calibration, verify the output parameters with a calibrated oscilloscope.</td>
</tr>
<tr>
<td>Gate input:</td>
<td>Active high or low, switchable. Suppresses triggering when active.</td>
</tr>
<tr>
<td>Monitor output:</td>
<td>Back-panel BNC connector provides a coincident replica of the output current.</td>
</tr>
<tr>
<td>Connectors, main output:</td>
<td>BNC, front-panel</td>
</tr>
<tr>
<td>Connectors, other:</td>
<td>Sync output: BNC, front-panel. Gate, Ext Trig, Monitor: BNC, rear-panel</td>
</tr>
<tr>
<td>GPIB and RS-232 control:</td>
<td>Standard feature. See page See http://www.avtechpulse.com/gpib for details.</td>
</tr>
<tr>
<td>LabView Drivers:</td>
<td>Check http://www.avtechpulse.com/labview for availability and downloads</td>
</tr>
<tr>
<td>Ethernet port, for remote control using VXI-11.3, ssh, telnet, & web:</td>
<td>-VXI option: Recommended as a modern alternative to GPIB / RS-232. See http://www.avtechpulse.com/options/vxi for details.</td>
</tr>
<tr>
<td>Power requirements:</td>
<td>100 - 240 Volts, 50 - 60 Hz</td>
</tr>
<tr>
<td>Dimensions: (H x W x D)</td>
<td>145 x 430 x 375 mm (5.7" x 17" x 14.8")</td>
</tr>
<tr>
<td>Chassis material:</td>
<td>Cast aluminum frame & handles, blue vinyl on aluminum cover plates</td>
</tr>
<tr>
<td>Temperature range:</td>
<td>+5°C to +40°C</td>
</tr>
</tbody>
</table>
REGULATORY NOTES

FCC PART 18

This device complies with part 18 of the FCC rules for non-consumer industrial, scientific and medical (ISM) equipment.

This instrument is enclosed in a rugged metal chassis and uses a filtered power entry module (where applicable). The main output signal is provided on a shielded connector that is intended to be used with shielded coaxial cabling and a shielded load. Under these conditions, the interference potential of this instrument is low.

If interference is observed, check that appropriate well-shielded cabling is used on the output connectors. Contact Avtech (info@avtechpulse.com) for advice if you are unsure of the most appropriate cabling. Also, check that your load is adequately shielded. It may be necessary to enclose the load in a metal enclosure.

If any of the connectors on the instrument are unused, they should be covered with shielded metal “dust caps” to reduce the interference potential.

This instrument does not normally require regular maintenance to minimize interference potential. However, if loose hardware or connectors are noted, they should be tightened. Contact Avtech (info@avtechpulse.com) if you require assistance.

EC DECLARATION OF CONFORMITY

We, Avtech Electrosystems Ltd.
P.O. Box 5120, LCD Merivale
Ottawa, Ontario
Canada K2C 3H4

declare that this pulse generator meets the intent of Directive 2004/108/EG for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 50081-1 Emission

EN 50082-1 Immunity
and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities:

EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control, and laboratory use

DIRECTIVE 2002/95/EC (RoHS)

DIRECTIVE 2002/96/EC (WEEE)

European customers who have purchased this equipment directly from Avtech will have completed a “WEEE Responsibility Agreement” form, accepting responsibility for WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC.

Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made.

Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.
AC POWER SUPPLY REGULATORY NOTES

This instrument converts the AC input power to the +24V DC voltage that powers the internal circuitry of this instrument using a Tamura AAD130SD-60-A switching power supply. According to the manufacturer, the Tamura AAD130SD-60-A has the following certifications:

UL60950-1
IEC60950 -1
CSA C22.2 No. 60950- 1
EN60950 -1

and is compliant with:

EN61000-3-2
EN61000-4-2 Level 2
EN61000-4-2 Level 3 (Air Only)
EN61000-4-4 Level 3
EN61000-4-5 Level 3
EN61000-4-11
CISPR 11 and 22 FCC Part 15 Class B (conducted)

FIRMWARE LICENSING

Instruments with firmware versions 5.00 or higher use open-source software internally. Some of this software requires that the source code be made available to the user as a condition of its licensing. This source code is distributed on the device itself. To access it, log in as user “source” with password “source”. The source files are provided in this user’s home directory, and are accessible using standard viewing and file transfer tools (such as vim, sz, and scp).

Earlier firmware versions do not contain any open source software.
VISUAL CHECK

After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the “Programming Manual for -B Instruments”) are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument.

POWER RATINGS

This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz.

The maximum power consumption is 90 Watts. Please see the “FUSES” section for information about the appropriate AC and DC fuses.

This instrument is an “Installation Category II” instrument, intended for operation from a normal single-phase supply.

CONNECTION TO THE POWER SUPPLY

An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.)

⚠️ Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord.

The table below describes the power cord that is normally supplied with this instrument, depending on the destination region:
<table>
<thead>
<tr>
<th>Destination Region</th>
<th>Description</th>
<th>Option</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom, Hong Kong, Singapore, Malaysia</td>
<td>BS 1363, 230V, 50 Hz</td>
<td>-AC00</td>
<td>Qualtek</td>
<td>370001-E01</td>
</tr>
<tr>
<td>Australia, New Zealand</td>
<td>AS 3112:2000, 230-240V, 50 Hz</td>
<td>-AC01</td>
<td>Qualtek</td>
<td>374003-A01</td>
</tr>
<tr>
<td>Continental Europe, Korea, Indonesia, Russia</td>
<td>European CEE 7/7 “Schuko” 230V, 50 Hz</td>
<td>-AC02</td>
<td>Qualtek</td>
<td>364002-D01</td>
</tr>
<tr>
<td>North America, Taiwan</td>
<td>NEMA 5-15, 120V, 60 Hz</td>
<td>-AC03</td>
<td>Qualtek</td>
<td>312007-01</td>
</tr>
<tr>
<td>Switzerland</td>
<td>SEV 1011, 230V, 50 Hz</td>
<td>-AC06</td>
<td>Qualtek</td>
<td>378001-E01</td>
</tr>
<tr>
<td>South Africa, India</td>
<td>SABS 164-1, 220-250V, 50 Hz</td>
<td>-AC17</td>
<td>Volex</td>
<td>2131H 10 C3</td>
</tr>
<tr>
<td>Japan</td>
<td>JIS 8303, 100V, 50-60 Hz</td>
<td>-AC18</td>
<td>Qualtek</td>
<td>397002-01</td>
</tr>
<tr>
<td>Israel</td>
<td>SI 32, 220V, 50 Hz</td>
<td>-AC19</td>
<td>Qualtek</td>
<td>398001-01</td>
</tr>
<tr>
<td>China</td>
<td>GB 1002-1, 220V, 50 Hz</td>
<td>-AC22</td>
<td>Volex</td>
<td>2137H 10 C3</td>
</tr>
</tbody>
</table>

PROTECTION FROM ELECTRIC SHOCK

⚠️ Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should:

1. Keep exposed high-voltage wiring to an absolute minimum.
2. Wherever possible, use shielded connectors and cabling.
3. Connect and disconnect loads and cables only when the instrument is turned off.
4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating.
5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel.
ENVIRONMENTAL CONDITIONS

This instrument is intended for use under the following conditions:

1. indoor use;
2. altitude up to 2 000 m;
3. temperature 5 °C to 40 °C;
4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C;
5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage;
6. no pollution or only dry, non-conductive pollution.

LABVIEW DRIVERS

FUSES

This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:

AC FUSE REPLACEMENT

To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:
DC FUSE REPLACEMENT

The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out.

FUSE RATINGS

The following table lists the required fuses:

<table>
<thead>
<tr>
<th>Fuses</th>
<th>Nominal Mains Voltage</th>
<th>Rating</th>
<th>Case Size</th>
<th>Recommended Replacement Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1, #2 (AC)</td>
<td>115 V</td>
<td>0.8A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>0218.800HXP</td>
</tr>
<tr>
<td></td>
<td>230 V</td>
<td>0.5A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>0218.500HXP</td>
</tr>
<tr>
<td>#3 (DC)</td>
<td>N/A</td>
<td>3.15A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>02183.15HXP</td>
</tr>
<tr>
<td>#4 (DC)</td>
<td>N/A</td>
<td>2.0A, 250V, Time-Delay</td>
<td>5×20 mm</td>
<td>0218002.HXP</td>
</tr>
</tbody>
</table>

The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com).

Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.
1. **POWER Switch**. This is the main power switch. When turning the instrument on, there is normally a delay of 5-10 seconds before anything is shown on the main display.

 If the main menu does not appear after 30 seconds, turn off the instrument and leave it off for at least 60 seconds before applying power again.

 Allow 30 seconds before re-powering an instrument that has been switched off. If the power is switched more frequently than that, the turn-on delay may be longer (up to 20 seconds) as the internal software performs filesystem checks.

2. **OVERLOAD Indicator**. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation.

 This overload indicator may flash yellow briefly at start-up. This is not a cause for concern.

 Note that the output stage will safely withstand a short-circuited load condition.

3. **OUT CONNECTOR**. This BNC connector provides the main output signal, into load impedances of 50Ω or higher.

 Caution: Voltages as high as +400V may be present on the center conductor of
Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed.

4. **SYNC OUT**. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main output by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to $R_L > 50\Omega$ with a pulse width of approximately 100 ns.

5. **LIQUID CRYSTAL DISPLAY (LCD)**. This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The “Programming Manual for -B Instruments” describes the menus and submenus in detail.

6. **KEYPAD**.

<table>
<thead>
<tr>
<th>Control Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVE</td>
<td>This moves the arrow pointer on the display.</td>
</tr>
<tr>
<td>CHANGE</td>
<td>This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer.</td>
</tr>
<tr>
<td>$\times 10$</td>
<td>If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten.</td>
</tr>
<tr>
<td>$\div 10$</td>
<td>If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten.</td>
</tr>
<tr>
<td>+/-</td>
<td>If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter.</td>
</tr>
<tr>
<td>EXTRA FINE</td>
<td>This changes the step size of the ADJUST knob. In the extra-fine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes.</td>
</tr>
<tr>
<td>ADJUST</td>
<td>This large knob adjusts the value of any displayed numeric adjustable values, such as frequency, pulse width, etc. The adjust step size is set by the "EXTRA FINE" button. When the main menu is displayed, this knob can be used to move the arrow pointer.</td>
</tr>
</tbody>
</table>
1. **AC POWER INPUT.** An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket.

2. **AC FUSE DRAWER.** The two fuses that protect the AC input are located in this drawer. Please see the “FUSES” section of this manual for more information.

3. **DC FUSES.** These two fuses protect the internal DC power supplies. Please see the “FUSES” sections of this manual for more information.

4. **GATE.** This TTL-level (0 and +5V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulled-down to ground by a 1 kΩ resistor. When set to active low mode, this input is pulled-up to +5V by a 1 kΩ resistor.

5. **TRIG.** This TTL-level (0 and +5V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is 1 kΩ. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.)

6. **GPIB Connector.** A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the “Programming Manual for -B
Instruments” for more details on GPIB control.

7. **RS-232 Connector.** A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. Instruments with firmware versions of 5.00 or higher require a user name (“admin”) and a password (“default”, as shipped from the factory) when logging into a serial terminal session. See the “Programming Manual for -B Instruments” for more details on RS-232 control.

8. **Network Connector.** (Optional feature. Present on -VXI units only.) This Ethernet connector allows the instrument to be remotely controlled using the VXI-11.3, ssh (secure shell), telnet, and http (web) protocols. See the “Programming Manual for -B Instruments” for more details.

9. **MON Connector.** This is a current monitor output. This output provides a voltage waveform that is proportional to the current waveform on the main output. The monitor relationship is:

\[V_{\text{MON}} = I_{\text{OUT}} \times 2.0 \text{ Volt} / \text{Amp}, \]

for a load of > 1 kΩ. (The monitor output can also drive a 50Ω load, but the output voltage will be reduced by a factor of two. This output is short-circuit protected.)
GENERAL INFORMATION

BASIC PULSE CONTROL

This instrument can be triggered by several sources - its own internal clock, an external TTL trigger signal, the front-panel “SINGLE PULSE” pushbutton, or by a computer-generated command. In any case, three output channels respond to the trigger: OUT, SYNC, and M. OUT is the signal that is applied to the device under test. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. The SYNC pulse serves as a reference point for the delay setting of the OUT pulse. The M output is a voltage waveform that is proportional to the current waveform on OUT. \(V_{\text{MON}} = I_{\text{OUT}} \times 2.0 \text{ Volt} / \text{Amp} \) for monitor loads of > 1 kΩ.

When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. This order is reversed for negative delays.

These pulses are illustrated below for a positive delay:

![Basic Output Pulses for Delay > 0](image)

The order of the output pulses is reversed for negative delays:
The delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces.

The next figure illustrates the relationship between the signals when an external TTL-level trigger is used:

Basic Output Pulses for Delay < 0

External Triggering

V_{MON} = I_{OUT} \times 2.0\ \text{VOLT/AMP}
As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed.

MONITOR CIRCUIT

As noted in the previous section, a current monitor output is available. The current monitor output also measures peak amplitude of the most recent pulse, in amperes, and displays it on the front panel LCD. (If a DC offset is present, the peak current will be the sum of the amplitude and the offset.)

TRIGGER MODES

This instrument has four front-panel trigger modes:

- **Internal Trigger**: the instrument controls the trigger frequency, and generates the clock internally.
- **External Trigger**: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.
- **Manual Trigger**: the instrument is triggered by the front-panel “SINGLE PULSE” pushbutton.
- **Hold Trigger**: the instrument is set to not trigger at all.

These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the “Programming Manual for -B Instruments” for more details.)

When being controlled by a computer, there is a fifth trigger mode:

- **Immediate Trigger**: generates a single trigger event. This is the computer-control equivalent of pressing the front-panel “SINGLE PULSE” pushbutton.

GATING MODES

Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the front-panel gate menu or the appropriate programming commands. This input can also be set to act synchronously or asynchronously. When set to asynchronous mode, the GATE will disable the output immediately. Output pulses may be truncated. When set to synchronous mode, the output will complete the full pulse width if the output is high, and then stop triggering. No pulses are truncated in this mode.
MANUAL FEEDBACK

Please report any errors or omissions in this manual, or suggestions for improvement, to info@avtechpulse.com. Thanks!
LOAD PROTECTION

DRIVING DIODE LOADS

When driving LED loads, the anode should be connected to the output of the instrument, and the cathode should be connected to ground. This is illustrated below:

Reversing this connection may cause the diode to breakdown, possibly damaging it.

ATTACHING AND DETACHING LOADS

To avoid damaging the loads connected to main outputs, the loads should only be connected to or removed from the instrument when:

- the instrument is off
- the instrument is on, but the outputs are turned off (i.e. the LCD display reads “OUTPUT OFF”)

⚠️ Do not connect loads when the instrument is on and the outputs are turned on. This can cause mild sparking and unexpected current surges.

OPEN AND SHORT CIRCUITS

The AV-156A-B-VXI-GE1-R5 will operate properly into a short circuit to ground.

Operation into an open circuit will not damage the instrument.
OPERATIONAL CHECK

This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well.

Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the “Local Control” section of the “Programming Manual for -B Instruments” thoroughly. The “Local Control” section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.

1. Connect a high-power, high-voltage 220Ω resistor between the OUT connector and ground. Factory tests are conducted using an Ohmite TAP800K220E resistor, available from Digi-Key.

2. Connect a cable from the SYNC OUT connector to the TRIG input of an oscilloscope. Set the oscilloscope to trigger externally.

3. Connect one oscilloscope probe (channel A) to the OUT load. Connect the other probe to the M output (on the rear panel). On the oscilloscope, set the channel A vertical scale to 100 V/div, the channel B vertical scale to 2 V/div, and the horizontal scale to 1 ms/div.

4. Turn on the AV-156A-B-VXI-GE1-R5. The instrument will execute a warm-up sequence during which time the internal capacitor banks are charged. Wait for this sequence to complete. After this delay, the main menu will appear on the LCD.
5. To set the AV-156A-B-VXI-GE1-R5 to trigger from the internal clock at a PRF of 10 Hz:

a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is.

b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 Hz.

c) The arrow pointer should be pointing at the “Internal” choice. If it is not, press MOVE until it is.

d) Press CHANGE to return to the main menu.

6. To set the delay to 2 ms:

a) Press the MOVE button until the arrow pointer is pointing at the delay menu item.

b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 2 ms.

c) Press CHANGE to return to the main menu.

7. To set the OUT pulse width to 1 ms:

a) Press the MOVE button until the arrow pointer is pointing at the “PW” menu item.

b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 1 ms.

c) The arrow pointer should be pointing at the “Normal” choice. If it is not, press MOVE until it is.

d) Press CHANGE to return to the main menu.

8. At this point, nothing should appear on the oscilloscope.

9. To enable the output:

a) Press the MOVE button until the arrow pointer is pointing at the output menu item.

b) Press the CHANGE button. The output submenu will appear.

c) Press MOVE until the arrow pointer is pointing at the “ON” choice.

d) Press CHANGE to return to the main menu.

10. To change the OUT output amplitude:
a) Press the MOVE button until the arrow pointer is pointing at the AMP menu item.

b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +1A.

c) Observe the oscilloscope. You should see 1 ms wide, 220V pulses (i.e., \(1 \text{A} \times 220\Omega = 220\text{V}\)) on the probe connected to the OUT main output. The other probe, connected to the M monitor output, should show 1 ms, 2V pulses (i.e. \(1 \text{A} \times 2\text{V/A}\)).

d) Press CHANGE to return to the main menu.

11. This completes the operational check.
PROGRAMMING YOUR PULSE GENERATOR

KEY PROGRAMMING COMMANDS

The “Programming Manual for -B Instruments” describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up, using the internal trigger source:

*rst (resets the instrument)
trigger:source internal (selects internal triggering)
frequency 1 Hz (sets the frequency to 1 Hz)
pulse:width 1 ms (sets the pulse width to 1 ms)
pulse:delay 10 ms (sets the delay to 10 ms)
output on (turns on the output)
source:current 1.2 A (sets the current amplitude to 1.2 Amperes)
measure:amplitude? (this returns the peak current, in amperes, as measured by the monitor circuit)

For triggering a single event, this sequence would be more appropriate:

*rst (resets the instrument)
trigger:source hold (turns off all triggering)
pulse:width 1 ms (sets the pulse width to 1 ms)
pulse:delay 10 ms (sets the delay to 10 ms)
output on (turns on the output)
source:current 1.2 A (sets the current amplitude to 1.2 Amperes)
trigger:source immediate (generates a single non-repetitive trigger event)
trigger:source hold (turns off all triggering)
output off (turns off both outputs)

These commands will satisfy 90% of your programming needs.

ALL PROGRAMMING COMMANDS

For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the “Programming Manual for -B Instruments”. (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Parameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGnostic:</td>
<td>:AMPLitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CALibration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:POINT</td>
<td><numeric value> <numeric value></td>
</tr>
<tr>
<td></td>
<td>:MONitor</td>
<td></td>
</tr>
</tbody>
</table>
LOCAL

MEASURE:

AMPLITUDE?

OUTPUT:

[STATE]

PROTECTION

TRIPPED?

REMOTE

[SOURCE]:

FREQUENCY

[CW | FIXED]

[SOURCE]:

CURRENT

[LEVEL]

[IMMediate]

AMPLITUDE

PROTECTION

TRIPPED?

[SOURCE]:

PULSE

PERIOD

WIDTH

DCYCLE

HOLD

DELAY

GATE

LEVEL

HIGH | LOW

TYPE

ASYNC | SYNC

STATUS:

[EVENT]?

CONDITION?

ENABLE

QUESTIONABLE

[EVENT]?

CONDITION?

ENABLE

SYSTEm:

COMMUnicate

GPIB

ADDRESS

SERial

CONTROL

RTS

REceive

BAUD

BITS

ECHO

PARity

[TYPe]

SBITS

ERROR

[NEXT]?

COUNT?

VERSION?

TRIGGER:

SOURCE

INternal | EXternal | MANual | HOLD | IMMEDIATE
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td><numeric value></td>
<td>[no query form]</td>
</tr>
<tr>
<td>*ESE</td>
<td>[query only]</td>
<td></td>
</tr>
<tr>
<td>*ESR?</td>
<td>[query only]</td>
<td></td>
</tr>
<tr>
<td>*IDN?</td>
<td>[query only]</td>
<td></td>
</tr>
<tr>
<td>*OPC</td>
<td>[no query form]</td>
<td></td>
</tr>
<tr>
<td>*SAV</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>*RCL</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>*RST</td>
<td>[no query form]</td>
<td></td>
</tr>
<tr>
<td>*SRE</td>
<td><numeric value></td>
<td>[query only]</td>
</tr>
<tr>
<td>*STB?</td>
<td>[query only]</td>
<td></td>
</tr>
<tr>
<td>*TST?</td>
<td>[query only]</td>
<td></td>
</tr>
<tr>
<td>*WAI</td>
<td>[no query form]</td>
<td></td>
</tr>
</tbody>
</table>
MECHANICAL INFORMATION

TOP COVER REMOVAL

If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off).

⚠️ Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge.

There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech (info@avtechpulse.com) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel.

⚠️ Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed.

RACK MOUNTING

A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle.

ELECTROMAGNETIC INTERFERENCE

To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length.
MAINTENANCE

REGULAR MAINTENANCE

This instrument does not require any regular maintenance.

On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the “FUSES” section for details.

CLEANING

If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the “TOP COVER REMOVAL” section for instructions on accessing the interior.) No other cleaning is recommended.
WIRING OF AC POWER
PERFORMANCE CHECK SHEET