Tel: 888-670-8729 (USA \& Canada) or +1-613-686-6675 (Worldwide)

BOX 5120, LCD MERIVALE OTTAWA, CANADA K2C3H5

PERFORMANCE CHECKSHEET

Model: AVO-9G-B-P-W1-P1B-T1B
Type: Ultra-High-Speed Laser Diode Driver
S.N.: 14269

Date: August 23, 2022
Basic specifications: \rightarrow

Output Amplitude: up to +53 V , to 50Ω
Pulse Width (FWHM): $1-200 \mathrm{~ns}$
Rise Time ($20 \%-80 \%$): ≤ 0.5 ns
Fall Time ($80 \%-20 \%$): ≤ 1 ns
PRF: $\quad 1 \mathrm{~Hz}-100 \mathrm{kHz}$
Jitter, Stability: OK
Prime Power: $\quad 100-240 V$ AC, $50-60 \mathrm{~Hz}$.

Mainframe output into 50 Ohm load at 100 kHz, $200 \mathrm{~ns},+53 \mathrm{~V}$, leading edge,

5 ns/div. 20 V/div (200 mV/div $\times 40 \mathrm{~dB}$):

Mainframe output into 50 Ohm load at 100 kHz, 200 ns, +53V, trailing edge,
$5 \mathrm{~ns} /$ div. $20 \mathrm{~V} /$ div ($200 \mathrm{mV} /$ div $\times 40 \mathrm{~dB}$):

Mainframe output into 50 Ohm load at 100 kHz, 200 ns, +53V, full pulse,
$50 \mathrm{~ns} /$ div. $20 \mathrm{~V} /$ div (200 mV/div $\times 40 \mathrm{~dB}$):

Mainframe output into 50 Ohm load at 100 kHz, $25 \mathrm{~ns},+53 \mathrm{~V}$,
$2 \mathrm{~ns} /$ div. $20 \mathrm{~V} / \mathrm{div}(200 \mathrm{mV} / \mathrm{div} \times 40 \mathrm{~dB}$):

Same conditions, but with output module:

Top waveform: Voltage across the parallel combination of the 4.5Ω effective resistance. It should be approximately $(+53 \mathrm{~V} / 54.5 \Omega) \times 4.5 \Omega=$ +4.4 V in amplitude, which agrees approximately with the observed waveform.

Bottom waveform: "MI" output, approximately $+53 \mathrm{~V} / 11$.

Both: $5 \mathrm{~ns} /$ div, 2 V/div ($200 \mathrm{mV} / \mathrm{div} \times 20 \mathrm{~dB}$).

Test method: Short leads are soldered across a chip resistor. A coaxial cable is soldered across the resistor. The signal lead is inserted into the anode pin socket. The ground lead is inserted into one of the other pin sockets (which are grounded). The total effective resistor is $5 \Omega \|$ $50 \Omega\left(R_{\text {sCOPE }}\right)=4.5 \Omega$.

